Advertisement

Automated Radiochemical Processing for Clinical Pet

  • H. C. Padgett
  • D. G. Schmidt
  • G. T. Bida
  • B. W. Wieland
  • E. Pekrul
  • W. G. Kingsbury

Abstract

With the recent emergence of positron emission tomography (PET) as a viable clinical tool,1,2 there is a need for a convenient, cost-effective source of the positron emitter-labeled radiotracers labeled with carbon-11, nitrogen-13, oxygen-15, and fluorine-18. These short-lived radioisotopes are accelerator produced and thus, require a cyclotron and radiochemistry processing instrumentation that can be operated in a clinical environment by competant technicians.3 The basic goal is to ensure safety and reliability while setting new standards for economy and ease of operation.

Keywords

Positron Emission Tomography Boron Carbide Clinical Positron Emission Tomography Command File Radiochemical Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.E. Kuhl, H.N. Wagner, A. Alavi, R.E. Coleman, K.L. Gould, S.M. Larson, M.A. Mintun, B.A. Siegel, and P.K. Strudier, Positron emission tomography: Clinical status in the United States in 1987, J. Nucl. Med. 29: 1136 (1988).Google Scholar
  2. 2.
    R.A. Hawkins and M.E. Phelps, Clinical PET. Operational and cost considerations, Admin. Radiol. 5: 20 (1986).Google Scholar
  3. 3.
    J.R. Barrio, G. Bida, N. Satyamurthy, H.C. Padgett, N.S. MacDonald, and M.E. Phelps, A minicyclotron-based technology for the production of positron-emitting labeled radiopharmaceuticals, in: “The Metabolism of the Human Brain Studied with Positron Emission Tomography,” T. Greitz, D.H. Ingvar, and L. Widen, eds., Raven Press, New York (1985).Google Scholar
  4. 4.
    G.O. Hendry, M.G. Straatmann, L.R. Carroll, F.A. Ramsey, B.W. Wieland, H.C. Padgett, G.T. Bida, D.G. Schmidt, and T.J. Ruth, Design and Performance of a compact radioisotope delivery system, Siemens Medical Systems, Inc., Hoffman Estates, Illinois.Google Scholar
  5. 5.
    Council on Scientific Affairs, American Medical Association, Cyclotrons and radiopharmaceuticals in positron emission tomography, J. Am. Med. Assoc. 259: 1854 (1988).CrossRefGoogle Scholar
  6. 6.
    G.O. Hendry, M.G. Straatmann, L.R. Carroll, F.R. Ramsey, and B.W. Wieland, Design and performance of a small clinical cyclotron, J. Nucl. Med. 27: P1018 (1986).Google Scholar
  7. 7.
    L.R. Carroll, E. Pekrul, G.O. Hendry, R.J. Nickles, and J. Votaw, Radiation measurements related to the design of a self-shielded accelerator system, Siemens Medical Systems, Hoffman Estates, Illinois.Google Scholar
  8. 8.
    J.S. Fowler and A.P. Wolf, Positron emitter-labeled compounds: Priorities and problems, in: “Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart,” M.E. Phelps, J.C. Mazziotta, and H.R. Schelbert, eds., Raven Press, New York (1986).Google Scholar
  9. 9.
    J.C. Clark and P.D. Buckingham, “Short-lived Radioactive Gases for Clinical Use,” Butterworths, London (1975).Google Scholar
  10. 10.
    G. Bida, B.W. Wieland, T.J. Ruth, D.G. Schmidt, G.O. Hendry, and R.E. Keen, An economical target for nitrogen-13 production by proton bombardment of a slurry of 73C powder in 160 water, J. Label. Comp. Radiopharm. 23: 1217 (1986).Google Scholar
  11. 11.
    B.W. Wieland, D.G. Schmidt, G. Bida, T.J. Ruth, and G.O. Hendry, Efficient, economical production of oxygen-15 labeled tracers with low energy protons, J. Label. Come. Radiopharm. 23: 1214 (1986).Google Scholar
  12. 12.
    B.W. Wieland, G.O. Hendry, D.G. Schmidt, G. Bida, and T.J. Ruth, Efficient small-volume 0–18 water targets for producing F-18 fluoride with low energy protons, J. Label. Comp. Radiopharm. 23: 1205 (1986).Google Scholar
  13. 13.
    J.S. Fowler and A.P. Wolf, 2-Deoxy-2-L18F]fluoro-D-glucose for metabolic studies: Current status, Int. J. Appl. Radiat. Isot. 37: 663 (1986).CrossRefGoogle Scholar
  14. 14.
    H.R. Schelbert and M. Schwaiger, PET studies of the heart, in: “Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart,” M.E. Phelps, J.C. Mazziotta, and H.R. Schelbert, eds., Raven Press, New York (1986).Google Scholar
  15. 15.
    M.H. Ter-Pogossian and P. Herscovitch, Radioactive oxygen-15 in the study of cerebral blood flow, blood volume, and oxygen metabolism, Semin. Nucl. Med. 15: 377 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    E.S. Garnett, G. Firnau, and C. Nahmias, Dopamine visualized in the basal ganglia of living man, Nature 305: 137 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Luxen, J.R. Barrio, G.T. Bida, and N. Satyamurthy, A simple, high yield synthesis of 6-[18F]fluorodopa, J. Label. Compds. Radiopharm. 23: 1066 (1986).Google Scholar
  18. 18.
    H.C. Padgett, D.G. Schmidt, A. Luxen, G.T. Bida, N. Satyamurthy, and J.R. Barrio, Computer-controlled radiochemical synthesis: A chemistry process control unit for the automated production of radiochemicals, Appl. Radiat. Isot. 40: 433 (1989).CrossRefGoogle Scholar
  19. 19.
    H.C. Padgett, J.R. Barrio, N.S. MacDonald, and M.E. Phelps, The unit operations approach applied to the synthesis of [1–11C]2-deoxy-D-glucose for routine clinical applications, J. Nucl. Med. 23: 739 (1982).PubMedGoogle Scholar
  20. 20.
    K. Hamacher, H.H. Coenen, and G. Stöcklin, Efficient stereospecific synthesis of no-carrier-added 2[18F]fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution, J. Nucl. Med. 27: 235 (1986).PubMedGoogle Scholar
  21. 21.
    A. Luxen, N. Satyamurthy, G.T. Bida, and J.R. Barrio, Stereospecific approach to the synthesis of [1SF]2deoxy-2-fluoro-D-mannose, Appl. Radiat. Isot. 37: 409 (1986).CrossRefGoogle Scholar
  22. 22.
    T.R Sykes, T.J. Ruth, and M.J. Adam, Synthesis and murine tissue uptake of sodium [78F]fluoroacetate, Nucl. Med. Biol. 13: 497 (1986).Google Scholar
  23. 23.
    N. Satyamurthy, G.T. Bida, J.R. Barrio, A. Luxen, J.C. Mazziotta, S.-C. Huang, and M.E. Phelps, No-carrieradded 3-(2’-(18F]fluoroethyl)spiperone, a new dopamine-receptor binding tracer for positron emission tomography, Nucl. Med. Biol. 13: 617 (1986).Google Scholar
  24. 24.
    G.T. Bida N. Satyamurthy, and J.R. Barrio, The synthesis of 2-[~8F]fluoro-2-deoxy-D-glucose using glycals: A reexamination, J. Nucl. Med. 25: 1327 (1984).PubMedGoogle Scholar
  25. 25.
    M. Sajjad, R.M. Lambrecht, and A.P. Wolf, Cyclotron isotopes and radio pharmaceuticals. XXXVIII. Excitation functions for the ‘60 (p, a) 73N and 14N (p, pn)13N reactions, Radiochim. Acta 39: 165 (1986).Google Scholar
  26. 26.
    N.J. Parks and K.A. Krohn, The synthesis of 13N labeled ammonia, dinitrogen nitrite, and nitrate using a single cyclotron target system, Int. J. Appl. Radiat. Isot. 29: 754 (1978).CrossRefGoogle Scholar
  27. 27.
    G.K. Mulholland, M.R. Kilbourn, and J.J. Moskwa, Direct simultaneous production of [15O]water and [13N]ammonia or [18F]fluoride ion by 26 MeV proton irradiation of a double chamber water target, Appl. Radiat. Isot. 41: 1193 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • H. C. Padgett
    • 1
  • D. G. Schmidt
    • 1
  • G. T. Bida
    • 1
  • B. W. Wieland
    • 1
  • E. Pekrul
    • 1
  • W. G. Kingsbury
    • 1
  1. 1.CTI Cyclotron Systems, Inc.BerkeleyUSA

Personalised recommendations