Ultraviolet Radiation Dosimetry and Measurement

  • Brian Diffey

Abstract

Ultraviolet radiation (UVR) is part of the electromagnetic spectrum and lies between the visible and the X-ray regions. Different wavebands in the ultraviolet spectrum show enormous variations in causing biological damage, and for this reason the UV spectrum is divided into three spectral regions: UV-A, UV-B, and UV-C.

Keywords

Convection Welding Mercury Cadmium Uranium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. W. Coblentz, Report on the Copenhagen meeting of the second international congress on light, Science 76, 412–415 (1932).PubMedGoogle Scholar
  2. 2.
    J. A. Parrish, R. R. Anderson, F. Urbach, and D. Pitts, UV-A: Biological Effects of Ultraviolet Radiation with Emphasis on Human Responses to Longwave Ultraviolet, Wiley, Chichester (1978).Google Scholar
  3. 3.
    World Health Organisation, Environmental Health Criteria 14: Ultraviolet Radiation, WHO, Geneva (1979).Google Scholar
  4. 4.
    A. Stimson, Photometry and Radiometry for Engineers, Wiley, New York (1974).Google Scholar
  5. 5.
    C. L. Wyatt, Radiometric Calibration: Theory and Methods, Academic, New York (1978).Google Scholar
  6. 6.
    J. W. T. Walsh, Photometry, Dover, New York (1965).Google Scholar
  7. 7.
    J. Jagger, in The Science of Photobiology (K. C. Smith, ed.), pp. 1–26, Plenum, New York (1977).Google Scholar
  8. 8.
    W. Harm, Biological Effects of Ultraviolet Radiation, Cambridge University Press, Cambridge (1980).Google Scholar
  9. 9.
    H. J. Morowitz, Absorption effects in volume irradiation of microorganisms Science 111, 229–230 (1950).PubMedGoogle Scholar
  10. 10.
    H. E. Johns, Dosimetry in photochemistry, Photochem. Photobiol. 8, 547–563 (1968).PubMedGoogle Scholar
  11. 11.
    J. Jagger, T. Fossum, and S. McCaul, Ultraviolet irradiation of suspensions of microorganisms: Possible errors involved in the estimation of average fluence per cell, Photochem. Photobiol. 21, 379–382 (1975).PubMedGoogle Scholar
  12. 12.
    B. E. Johnson, F. Daniels Jr., and I. A. Magnus, in Photophysiology (A. C. Giese, ed.), Vol. IV, pp. 139–202, Academic, London (1968).Google Scholar
  13. 13.
    B. L. Diffey, The consistency of studies of ultraviolet erythema in normal human skin, Phys. Med. Biol. 27, 715–720 (1982).PubMedGoogle Scholar
  14. 14.
    J. A. Parrish, C. Y. Ying, M. A. Pathak, and T. B. Fitzpatrick, in Sunlight and Man (T. B. Fitzpatrick, ed.), pp. 131–142, Universtity of Tokyo Press, Tokyo (1974).Google Scholar
  15. 15.
    A. P. Warin, The ultraviolet erythemas in man, Br. J. Dermatol. 98, 473–477 (1978).PubMedGoogle Scholar
  16. 16.
    M. F. Holick, J. A. MacLaughlin, J. A. Parrish, and R. R. Anderson, in The Science of Photomedicine (J. D. Regan and J. A. Parrish, eds.), pp. 195–218, Plenum, New York (1982).Google Scholar
  17. 17.
    H. F. DeLuca and H. K. Schnoes, Metabolism and mechanism of action of vitamin D, Ann. Rev. Biochem. 45, 631–642 (1976).PubMedGoogle Scholar
  18. 18.
    A. C. Giese, Living with Our Sun’s Ultraviolet Rays, Plenum, New York (1976).Google Scholar
  19. 19.
    P. Unna, Histopathologie der Hautkrankheiten, August Hirschwald, Berlin (1894).Google Scholar
  20. 20.
    W. Dubreuilh, Des hyperkeratoses circonscriptes, Ann. Dermatol Syphiligr. (Paris) 7 (Ser. 3), 1158–1204 (1896).Google Scholar
  21. 21.
    H. F. Blum, Carcinogenesis by Ultraviolet Light, Princeton Univ. Press, Princeton (1959).Google Scholar
  22. 22.
    G. Swanbeck and L. Hillström, Analysis of etiological factors of squamous cell skin cancer of different locations: 4. Concluding remarks, Acta Derm. Venereal. (Stockholm) 51, 151–156 (1971).Google Scholar
  23. 23.
    F. Urbach, J. H. Epstein, and P. D. Forbes, in Sunlight and Man (T. B. Fitzpatrick, ed.), pp. 259–284, University of Tokyo Press, Tokyo (1974).Google Scholar
  24. 24.
    F. Urbach, in The Science of Photomedicine (J. D. Regan and J. A. Parrish, eds.), pp. 261–292, Plenum, New York (1982).Google Scholar
  25. 25.
    D. G. Pitts and A. P. Cullen, Ocular ultraviolet effects from 295 to 335 nm in the rabbit eye. A preliminary report, DHEW (NIOSH) Publication No. 77-130. National Institute of Occupational Safety and Health, Division of Biomedical and Behavioral Science, Cincinnati, Ohio (1977).Google Scholar
  26. 26.
    S. Zigman, G. Griess, T. Yulo, and J. Schultz, Ocular protein alterations by near UV light, Exp. Eye Res. 15, 255–265 (1973).PubMedGoogle Scholar
  27. 27.
    S. Duke-Elder, System of Ophthalmology, Vol. 14: Injuries, Part 2: Nonmechanical injuries, C. V. Mosby, St. Louis (1972).Google Scholar
  28. 28.
    S. Zigman, T. Yulo, T. Paxhia, S. Salceda, and M. Datiles, Comparative studies of human cataracts, Abstracts of the Association for Research in Vision and Ophthalmology, Sarasota, Florida (1977).Google Scholar
  29. 29.
    D. J. Rees, Health Physics, Butterworths, London (1967).Google Scholar
  30. 30.
    K. W. Hausser and W. Vahle, Die Abhängigkeit des Lichterythems und der Pigmentbildung von der Schwingungszahl (Wellenlänge) der erregenden Strahlung, Strahlentherapie 13, 41–71 (1922).Google Scholar
  31. 31.
    M. Luckiesh, L. L. Holladay, and A. H. Taylor, Reactions of untanned skin to ultraviolet radiation, J. Opt. Soc. Am. 20, 423–432 (1930).Google Scholar
  32. 32.
    K. W. Hausser and W. Vahle, Sonnenbrand und Sonnenbraünung, Wiss. Veröff. Siemens Konzern 6, 101–120 (1927).Google Scholar
  33. 33.
    W. W. Coblentz, R. Stair, and J. M. Hogue, The spectral erythemic reaction of the human skin to ultraviolet radiation, Proc. Natl. Acad. Sci. 17, 401–405 (1931).PubMedGoogle Scholar
  34. 34.
    W. W. Coblentz and R. Stair, Data on the spectral erythemic reaction of the untanned human skin to ultraviolet radiation, Bur. Stand. J. Res. 12, 13–14 (1934).Google Scholar
  35. 35.
    I. A. Magnus, Studies with a monochromator in the common idiopathic photo-dermatoses, Br. J. Dematol. 76, 245–264 (1964).Google Scholar
  36. 36.
    M. A. Everett, R. L. Olson, and R. M. Sayre, Ultraviolet erythema, Arch. Dermatol. 92, 713–719 (1965).PubMedGoogle Scholar
  37. 37.
    R. G. Freeman, D. W. Owens, J. M. Knox, and H. T. Hudson, Relative energy requirements for an erythemal response of skin to monochromatic wavelengths of ultraviolet present in the solar spectrum, J. Invest. Dermatol. 47, 586–592 (1966).PubMedGoogle Scholar
  38. 38.
    D. Berger, F. Urbach, and R. E. Davies, The action spectrum of erythema induced by ultraviolet radiation: Preliminary report, in Proc. XIII Congressus Internationalis Dermatologiae (W. Jadassohn and C. G. Schirren, eds.), Vol. 2, pp. 1112–1117, Springer-Verlag, Berlin (1968).Google Scholar
  39. 39.
    R. L. Olson, R. M. Sayre, and M. A. Everett, Effect of anatomic location and time on ultraviolet erythema, Arch. Dermatol. 93, 211–215 (1966).PubMedGoogle Scholar
  40. 40.
    R. M. Sayre, R. L. Olson, and M. A. Everett, Quantitative studies on erythema, J. Invest. Dermatol. 46, 240–244 (1966).PubMedGoogle Scholar
  41. 41.
    D. J. Cripps and C. A. Ramsay, Ultraviolet action spectrum with a prism-grating monochromator, Br. J. Dermatol. 82, 584–592 (1970).PubMedGoogle Scholar
  42. 42.
    L. A. Mackenzie and W. Frain-Bell, The construction and development of a grating monochromator and its application to the study of the reaction of the skin to light, Br. J. Dermatol. 89, 251–264 (1973).PubMedGoogle Scholar
  43. 43.
    Y. Nakayama, F. Morikawa, M. Fukuda, M. Hamano, K. Toda, and M. A. Pathak, in Sunlight and Man (T. B. Fitzpatrick, ed.) pp. 591–611. University of Tokyo Press, Tokyo (1974).Google Scholar
  44. 44.
    R. L. Olson, R. M. Sayre, and M. A. Everett, Effect of field size on ultraviolet minimal erythema dose, J. Invest. Dermatol. 45, 516–519 (1965).PubMedGoogle Scholar
  45. 45.
    H. Brodthagen, in The Biologic Effects of Ultraviolet Radiation (with Emphasis on the Skin) (F. Urbach, ed.), pp. 459–467, Pergamon, Oxford (1969).Google Scholar
  46. 46.
    W. H. Goldsmith and F. F. Hellier, in Recent Advances in Dermatology, 2nd edition, p. 364, Blakiston, New York (1954).Google Scholar
  47. 47.
    B. L. Diffey, The variation of erythema with monochromator bandwidth, Arch. Dermatol. 111, 1070–1071 (1975).PubMedGoogle Scholar
  48. 48.
    J. C. van der Leun, in Research Progress in Organic, Biological and Medicinal Chemistry (U. Gallo and L. Santamaria, eds.), Vol. 3, pp. 711–736, North-Holland, Amsterdam (1972).Google Scholar
  49. 49.
    I. Willis, A. Kligman, and J. Epstein, Effects of long ultraviolet rays on human skin: Photoprotective or photoaugmentative?, J. Invest. Dermatol. 59, 416–420 (1972).PubMedGoogle Scholar
  50. 50.
    J. C. van der Leun and T. Stoop, in The Biologic Effects of Ultraviolet Radiation (with Emphasis on the Skin) (F. Urbach, ed.), pp. 251–254, Pergamon, Oxford (1969).Google Scholar
  51. 51.
    B. L. Diffey and A. F. McKinlay, The UVB content of “UVA fluorescent lamps” and its erythemal effectiveness in human skin, Phys. Med. Biol. 28, 351–358 (1983).PubMedGoogle Scholar
  52. 52.
    W. Harm, Biological Effects of Ultraviolet Radiation, Cambridge University Press, Cambridge (1980).Google Scholar
  53. 53.
    J. G. Calvert and J. N. Pitts, Jr., Photochemistry, Wiley, New York (1966).Google Scholar
  54. 54.
    C. G. Hatchard and C. A. Parker, A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer, Proc. R. Soc. London A325, 518–536 (1956).Google Scholar
  55. 55.
    A. H. Carter and J. Weiss, The transfer of excitation energy from uranium ions in solution, Proc. R. Soc. London A174, 351–370 (1940).Google Scholar
  56. 56.
    G. R. Seely, in Photophysiology (A. C. Giese, ed.), Vol. III, pp. 1–32, Academic, New York (1968).Google Scholar
  57. 57.
    R. E. Davies, in The Biologic Effects of Ultraviolet Radiation (with Emphasis on the Skin) (F. Urbach, ed.), pp. 437–443, Pergamon, Oxford (1969).Google Scholar
  58. 58.
    F. Urbach, in The Biologic Effects of Ultraviolet Radiation (with Emphasis on the Skin) (F. Urbach, ed.), pp. 635–650, Pergamon, Oxford (1969).Google Scholar
  59. 59.
    K. I. Jacobson and R. E. Jacobson, Imaging Systems, Focal Press, London (1976).Google Scholar
  60. 60.
    J. Kosar, Light Sensitive Systems, Wiley, New York (1965).Google Scholar
  61. 61.
    S. A. Jackson, A film badge dosimeter for UVA radiation, J. Biomed. Eng. 2, 63–64 (1980).PubMedGoogle Scholar
  62. 62.
    J. B. Ali and R. E. Jacobson, The use of diazo film as a film badge dosimeter, J. Photographic Sci. 28, 172–176 (1980).Google Scholar
  63. 63.
    J. B. A. Card, An investigation of diazo materials as dosimeters for ultraviolet and visible radiation, Ph.D. thesis, CNAA (1982).Google Scholar
  64. 64.
    A. Davis, G. H. W. Deane, and B. L. Diffey, Possible dosimeter for ultraviolet radiation, Nature 261, 169–170 (1976).PubMedGoogle Scholar
  65. 65.
    A. V. J. Challoner, D. Corless, A. Davis, G. H. W. Deane, B. L. Diffey, S. P. Gupta, and I. A. Magnus, Personnel monitoring of exposure to ultraviolet radiation, Clin. Exp. Dermatol. 1, 175–179 (1976).PubMedGoogle Scholar
  66. 66.
    J. F. Leach, V. E. McLeod, A. R. Pingstone, A. Davis, and G. H. W. Deane, Measurement of the ultraviolet doses received by office workers, Clin. Exp. Dermatol. 3, 77–79 (1978).PubMedGoogle Scholar
  67. 67.
    M. F. Corbett, A. Davis, and I. A. Magnus, Personnel radiation dosimetry in drug photosensitivity: Field study of patients on phenothiazine therapy, Br. J. Dermatol 98, 39–46 (1978).PubMedGoogle Scholar
  68. 68.
    B. L. Diffey, O. Larkö, and G. Swanbeck, UV-B doses received during different outdoor activities and UV-B treatment of psoriasis, Br. J. Dematol. 106, 33–41 (1982).Google Scholar
  69. 69.
    O. Larkö and B. L. Diffey, Natural UV-B radiation received by people with outdoor, indoor and mixed occupations and UV-B treatment of psoriasis, Clin. Exp. Dermatol. 8, 279–285 (1983).PubMedGoogle Scholar
  70. 70.
    D. Corless, S. P. Gupta, S. Switala, J. M. Barragry, B. J. Boucher, R. D. Cohen, and B. L. Diffey, Response of plasma 25-hydroxyvitamin D to ultraviolet irradiation in long-stay geriatric patients, Lancet ii, 649–651 (1978).Google Scholar
  71. 71.
    A. R. Young, A. V. J. Challoner, I. A. Magnus, and A. Davis, UVR radiometry of solar simulated radiation in experimental photocarcinogenesis studies, Br. J. Dermatol. 106, 43–52 (1982).PubMedGoogle Scholar
  72. 72.
    G. Toss, R. Andersson, B. L. Diffey, P. A. Fall, O. Larkö, and L. Larsson, Oral vitamin D and ultraviolet radation for the prevention of vitamin D deficiency in the elderly, Acta. Med. Scand. 212, 157–162 (1982).PubMedGoogle Scholar
  73. 73.
    M. G. Pepper and B. L. Diffey, Automatic read-out device for ultraviolet radiation polymer film dosimeters, Med. Biol. Eng. Comp. 18, 467–473 (1980).Google Scholar
  74. 74.
    A. Davis, B. L. Diffey, and T. J. Täte, A personal dosimeter for biologically effective solar UV-B radiation, Photochem. Photobiol. 34, 283–286 (1981).PubMedGoogle Scholar
  75. 75.
    B. L. Diffey, A. Davis, M. Johnson, and T. R. Harrington, A dosimeter for long wave ultraviolet radiation, Br. J. Dermatol. 97, 127–130 (1977).PubMedGoogle Scholar
  76. 76.
    B. L. Diffey and A. Davis, A new dosimeter for the measurement of natural ultraviolet radiation in the study of photodermatoses and drug photosensitivity, Phys. Med. Biol. 23. 318–323 (1978).PubMedGoogle Scholar
  77. 77.
    T. J. Tate, B. L. Diffey, and A. Davis, An ultraviolet radiation dosimeter based on the photosensitsing drug nalidixic acid, Photochem. Photobiol. 31, 27–30 (1980).Google Scholar
  78. 78.
    B. L. Diffey, I. Oliver, and A. Davis, A personal dosimeter for quantifying the biologically-effective sunlight exposure of patients receiving benoxaprofen, Phys. Med. Biol. 27, 1507–1513 (1982).PubMedGoogle Scholar
  79. 79.
    A. Zweig and W. A. Henderson, Jr., A photochemical mid-ultraviolet dosimeter for practical use as a sunburn dosimeter, Photochem. Photobiol. 24, 543–549 (1976).PubMedGoogle Scholar
  80. 80.
    M. V. Mayneord and T. J. Tulley, The measurement of non-ionizing radiations for medical purposes, Proc. R. Soc. Med. 36, 411–422 (1943).PubMedGoogle Scholar
  81. 81.
    E. J. Gillham, Radiometric Standards and Measurements, Notes on Applied Science No. 23, HMSO, London (1961).Google Scholar
  82. 82.
    E. Schwarz, Semi-conductor thermopiles, Research 5, 407–411 (1952).Google Scholar
  83. 83.
    M. Slater and G. S. Melville, A method for improving the precision of inverse square measurements, Br. J. Radiol. 31, 392–394 (1958).PubMedGoogle Scholar
  84. 84.
    W. M. Doyle, B. C. McIntosh, and J. Geist, Implementation of a system of optical calibration based on pyroelectric radiometry, Opt. Eng. 15, 541–548 (1976).Google Scholar
  85. 85.
    P. O. Byrne and F. T. Farmer, A self-calibrating black-body radiometer for use in the UV, IR and visible spectrum, J. Phys. E: Sci. Instr. 5, 590–591 (1972).Google Scholar
  86. 86.
    Hamamatsu catalog of silicon photocells, Hamamatsu TV Co. Ltd, Japan (1981).Google Scholar
  87. 87.
    B. L. Diffey and R. J. Oliver, An ultraviolet radiation monitor for routine use in physiotherapy, Physiotherapy 67, 64–66 (1981).PubMedGoogle Scholar
  88. 88.
    P. J. Mountford and M. G. Pepper, A wide-band ultraviolet radiation monitor for measuring the output of monochromators used in dermatology, Phys. Med. Biol. 26, 925–930 (1981).PubMedGoogle Scholar
  89. 89.
    Mullard, Cadmium Sulphide Photoconductive Cells, Milliard Ltd., London (1969).Google Scholar
  90. 90.
    Hamamatsu catalog of CdS, CdSe photoconductive cells, Hamamatsu TV Co. Ltd., Japan.Google Scholar
  91. 91.
    B. L. Diffey, T. R. Elkerton, and M. F. Diprose, A simple light meter for use in dermatology, Med. Biol. Eng. 14, 101–102 (1976).PubMedGoogle Scholar
  92. 92.
    B. L. Diffey and A. Miller, A detector for monitoring the output of ultraviolet radiation sources used in the photochemotherapy of psoriasis, Phys. Med. Biol. 23, 514–517 (1978).PubMedGoogle Scholar
  93. 93.
    J. Jagger, A small and inexpensive ultraviolet dose-rate meter useful in biological experiments, Rad. Res. 14, 394–403 (1961).Google Scholar
  94. 94.
    D. F. Robertson, Solar ultraviolet radiation in relation to human sunburn and skin cancer, Ph.D. thesis, University of Queensland, Australia (1972).Google Scholar
  95. 95.
    D. F. Robertson, in The Biologic Effects of Ultraviolet Radiation (with Emphasis on the Skin) (F. Urbach, ed.), pp. 433–436, Pergamon, Oxford (1969).Google Scholar
  96. 96.
    D.S. Berger, The sunburning ultraviolet meter: Design and performance, Photochem. Photobiol. 24, 587–593 (1976).PubMedGoogle Scholar
  97. 97.
    D. S. Berger, in The Role of Solar Ultraviolet Radiation in Marine Ecosystems, (J. Calkins, ed.), pp. 181–192, Plenum, New York (1982).Google Scholar
  98. 98.
    G. Busuoli, UV-dosimetry with TLD materials, Proceedings of ISPRA course on Applied Thermoluminescence Dosimetry, Commission of the European Communities (1982).Google Scholar
  99. 99.
    D. H. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources: A Comprehensive Handbook, Plenum, New York (1980).Google Scholar
  100. 100.
    E. W. Palmer, M. C. Hutley, A. Franks, J. R. Verrill, and B. Gale, Diffraction Gratings, Rep. Prog. Phys. 38, 975–1048 (1975).Google Scholar
  101. 101.
    J. R. Moore, Sources of error in spectroradiometry, Lighting Res. Tech. 12, 213–220 (1980).Google Scholar
  102. 102.
    P. J. Key and T. H. Ward, The establishment of ultraviolet spectral emission scales using synchrotron radiation, Metrologia 14, 17–29 (1978).Google Scholar
  103. 103.
    H. E. Johns and A. M. Rauth, Theory and design of high intensity UV mono-chromators for photobiology and photochemistry, Photochem. Photobiol. 4, 673–692 (1965).Google Scholar
  104. 104.
    R. D. Saunders and H. J. Kostkowski, Accurate solar spectroradiometry in the UV-B, Optical Radiation News No. 24, U.S. Department of Commerce, NBS, Washington (1978).Google Scholar
  105. 105.
    B. L. Diffey, Sunlamps, sunbeds and solaria, Dermatol. Practice 1, 13–18 (1982).Google Scholar
  106. 106.
    DIN 5031, Deutsche Normen, Berlin (1978).Google Scholar
  107. 107.
    CIE, Compte Rendu 9, Tagung, Berlin/Karlsruhe, S 596-625 (1935).Google Scholar
  108. 108.
    B. L. Diffey and A. V. J. Challoner, Absolute radiation dosimetry in photochemotherapy, Phys. Med. Biol. 23, 1124–1129 (1978).PubMedGoogle Scholar
  109. 109.
    National Institute for Occupational Safety and Health, Criteria for a recommended standard... occupational exposure to ultraviolet radiation, DHEW, Washington DC (1972).Google Scholar
  110. 110.
    National Radiological Protection Board, Protection against ultraviolet radiation in the workplace, HMSO, London (1977).Google Scholar
  111. 111.
    D. H. Sliney, The merits of an envelope action spectrum for ultraviolet radiation exposure criteria, Am. Ind. Hyg. Assn. J. 33, 644–653 (1972).Google Scholar
  112. 112.
    T. Roach, Final report on a method for field evaluation of UV radiation hazards, prepared by CBS Laboratories for the National Institute for Occupational Safety and Health (NIOSH), Contract No. HSM-99-72-144, NIOSH, Cincinnati (1973).Google Scholar
  113. 113.
    B. L. Diffey, Ultraviolet Radiation in Medicine, Adam Hilger, Bristol (1982).Google Scholar
  114. 114.
    J. A. Parrish, T. B. Fitzpatrick, L. Tannehbaum, and M. A. Pathak, Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light, New Engl. J. Med. 291, 1207–1211 (1974).PubMedGoogle Scholar
  115. 115.
    J. F. Walter, J. J. Voorhees, W. H. Kelsey, and E. A. Duell, Psoralen plus blacklight inhibits epidermal DNA synthesis, Arch. Dermatol. 107, 861–865 (1973).PubMedGoogle Scholar
  116. 116.
    Task Forces on Psoriasis and Photobiology of the American Academy of Dermatology, PUVA Statement, Arch. Dermatol. 113, 1195 (1977).Google Scholar
  117. 117.
    Lancet Editorial, Ultraviolet Radiation and Cancer of the Skin, Lancet i, 537–538 (1978).Google Scholar
  118. 118.
    J. H. Eptein, Risks and benefits of the treatment of psoriasis, New England J. Med. 300, 852–853 (1979).Google Scholar
  119. 119.
    C. F. Arlett, Mutagenesis in cultured mammalian cells, Stud. Biophys. 36/37, 139–147 (1973).Google Scholar
  120. 120.
    F. Urbach, Modification of ultraviolet carcinogenesis by photoactive agents, J. Invest. Dermatol. 32, 373–387 (1959).PubMedGoogle Scholar
  121. 121.
    M. A. Pathak, F. Daniels, C. E. Hopkins, and T. B. Fitzpatrick, Ultraviolet carcinogenesis in albino and pigmented mice receiving furocoumarins: Psoralen and 8-methoxypsoralen, Nature 183, 728–730 (1959).PubMedGoogle Scholar
  122. 122.
    A. C. Griffin, R. E. Hakim, and J. Knox, The wavelength effect upon erythemal and carcinogenic response in psoralen treated mice, J. Invest. Dermatol. 31, 289–294 (1959).Google Scholar
  123. 123.
    R. S. Stern, L. A. Thibodeau, R. A. Kleinerman, J. A. Parrish, and T. B. Fitzpatrick, Risk of cutaneous carcinoma in patients treated with oral methoxsalen photochemo-therapy for psoriasis, New England J. Med. 300, 809–813 (1979).Google Scholar
  124. 124.
    K. Wolff, F. Gschnait, H. Hönigsmann, K. Konrad, J. A. Parrish, and T. B. Fitzpatrick, Phototesting and dosimetry for photochemotherapy, Br. J. Dermatol. 96, 1–10 (1977).PubMedGoogle Scholar
  125. 125.
    K. Wolff, T. B. Fitzpatrick, J. A. Parrish, F. Gschnait, B. Gilchrest, H. Honigsmann, M. A. Pathak, and L. Tannenbaum, Photochemotherapy for psoriasis with orally administered methoxsalen, Arch. Dermatol. 112, 943–950 (1976).PubMedGoogle Scholar
  126. 126.
    T. Lakshmipathi, P. W. Gould, L. A. Mackenzie, B. E. Johnson, and W. Frain-Bell, Photochemotherapy in the treatment of psoriasis, Br. J. Dermatol. 96, 587–594 (1977).PubMedGoogle Scholar
  127. 127.
    J. W. Melski, L. Tanenbaum, J. A. Parrish, T. B. Fitzpatrick, and H. L. Bleich, Oral methoxsalen photochemotherapy for the treatment of psoriasis: A co-operative clinical trial, J. Invest. Dermatol. 68, 328–335 (1977).PubMedGoogle Scholar
  128. 128.
    D. W. Owens, J. M. Glicksman, R. G. Freeman, and R. Carnes, Biologic action spectra of 8-methoxypsoralen determined by monochromatic light, J. Invest. Dermatol. 51, 435–440 (1968).PubMedGoogle Scholar
  129. 129.
    H. W. Buck, I. A. Magnus, and A. D. Porter, The action spectrum of 8-methoxypsoralen for erythema in human skin: Preliminary studies with a monochromator, Br. J. Dermatol. 72, 249–255 (1960).PubMedGoogle Scholar
  130. 130.
    M. A. Pathak, Mechanism of psoralen photosensitization and in vivo biological action spectrum of 8-methoxypsoralen, J. Invest. Dermatol. 37, 397–407 (1961).PubMedGoogle Scholar
  131. 131.
    A. R. Young and I. A. Magnus, An action spectrum for 8-MOP induced sunburn cells in mammalian epidermis, Br. J. Dermatol. 104, 541–548 (1981).PubMedGoogle Scholar
  132. 132.
    D. Stobbart and B. L. Diffey, A comparison of some commercially available UVA meters used in photochemotherapy, Clin. Phys. Physiol. Meas. 1, 267–273 (1980).Google Scholar
  133. 133.
    B. L. Diffey, PUVA: A review of ultraviolet dosimetry, Br. J. Dermatol. 98, 703–706 (1978).PubMedGoogle Scholar
  134. 134.
    B. L. Diffey, A. V. J. Challoner, and P. J. Key, A survey of the ultraviolet radiation emissions of photochemotherapy units, Br. J. Dermatol. 102, 301–306 (1980).PubMedGoogle Scholar
  135. 135.
    B. L. Diffey, T. R. Harrington, and A. V. J. Challoner, A comparison of the anatomical uniformity of irradiation in two different photochemotherapy units, Br. J. Dermatol 99, 361–363 (1978).PubMedGoogle Scholar
  136. 136.
    S. Rogers, J. Marks, S. Shuster, D. Vella Briffa, A. Warin, and M. Greaves, Comparison of photochemotherapy and dithranol in the treatment of chronic plaque psoriasis, Lancet i, 455–458 (1979).Google Scholar
  137. 137.
    H. Moseley, B. L. Diffey, J. M. Marks, and R. M. Mackie, Personal solar UV-A doses received by patients undergoing oral psoralen photochemotherapy for psoriasis, Br. J. Dermatol. 105, 573–577 (1981).PubMedGoogle Scholar
  138. 138.
    B. L. Diffey, A mathematical model of the biologically effective dose of solar UVA received by patients undergoing oral psoralen photochemotherapy for psoriasis, Phys. Med. Biol. 26, 1129–1135 (1981).PubMedGoogle Scholar
  139. 139.
    F. Ellinger, Medical Radiation Biology, Charles C. Thomas, Springfield, Illinois (1957).Google Scholar
  140. 140.
    R. M. Neer, T. R. A. Davis, A. Walcott, S. Koski, P. Schepis, I. Taylor, L. Thorington, and R. J. Wurtman, Stimulation by artificial lighting of calcium absorption in elderly human subjects, Nature 229, 244–257 (1971).Google Scholar
  141. 141.
    E. Gorter, On rickets, J. Paediatr. 4, 1 (1934).Google Scholar
  142. 142.
    A. N. Exton-Smith, B. R. Stanton, and A. C. M. Windsor, Nutrition of Housebound Old People, King Edward’s Hospital Fund for London (1972).Google Scholar
  143. 143.
    D. Corless, M. Beer, B. J. Boucher, S. P. Gupta, and R. D. Cohen, Vitamin-D status in long-stay geriatric patients, Lancet i, 1404 (1975).Google Scholar
  144. 144.
    M. A. Preece, S. Tomlinson, C. A. Ribot, J. Pietrek, H. T. Korn, D. M. Davies, J. A. Ford, M. G. Dunnigan, and J. L. H. O’Riordan, Studies of Vitamin-D deficiency in Man, Q. J. Med. New Ser. XLIV, 575–589 (1975).Google Scholar
  145. 145.
    Register of Adverse Reactions, Committee on Safety of Medicines (1964–71).Google Scholar
  146. 146.
    P. Goldsmith, A. F. Tuck, J. S. Foot, E. L. Simmons, and R. L. Newson, Nitrogen oxides, nuclear weapon testing, Concorde and stratospheric ozone, Nature 244, 545–551 (1973).Google Scholar
  147. 147.
    R. D. Hudson and E. I. Reed (eds), The Stratosphere: Present and Future, NASA Reference Publication 1049 (1979).Google Scholar
  148. 148.
    F. R. de Gruijl and J. C. van der Leun, A dose-response model for skin cancer induction by chronic UV exposure of a human population, J. Theor. Biol. 83, 487–504 (1980).PubMedGoogle Scholar
  149. 149.
    J. Calkins (ed.), The Role of Solar Ultraviolet Radiation in Marine Ecosystems, Plenum, New York (1982).Google Scholar
  150. 150.
    D. S. Berger and F. Urbach, A climatology of sunburning ultraviolet radiation, Photochem. Photobiol. 35, 187–192 (1982).PubMedGoogle Scholar
  151. 151.
    B. L. Diffey, The calculation of the spectral distribution of natural ultraviolet radiation under clear day conditions, Phys. Med. Biol. 22, 309–316 (1977).PubMedGoogle Scholar
  152. 152.
    A. Knudson and F. Benford, Quantitative studies of the effectiveness of UV-radiation of various wavelength in rickets, J. Biol. Chem. 124, 287–290 (1938).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Brian Diffey
    • 1
  1. 1.Regional Medical Physics DepartmentDryburn HospitalDurhamUK

Personalised recommendations