Effects of Stress and Morphine on Natural Killer Cell Activity and on Mammary Tumor Development

  • James W. Lewis
  • Yehuda Shavit
  • Fredricka C. Martin
  • Gregory W. Terman
  • Robert P. Gale
  • John C. Liebeskind


At the time we began our investigations of the modulation of immune function and tumor development by neural and endocrine opioid systems, several findings suggested that this was a reasonable avenue to explore. For example, focal electrical stimulation of an opioid-rich brain region was found to increase tumor growth (Brechner et al., 1983; Simon et al., 1980), specific brain lesions alter immune functions (Cross et al., 1982; Stein et al., 1982), and immune responses have been correlated with changes in brain neural activity (Besedovsky et al., 1983). Also, evidence was accumulating from in vitro studies that opioids influence the functioning of the immune system (for reviews see Plotnikoff and Miller, 1983; Weber and Pert, 1984). It was our intent to use environmental stressors as stimuli for activating endogenous opioid systems and observe their effects on tumor development and immune competence. Examination of the literature pertaining to the effects of stress on these processes, however, presented us with a somewhat confusing picture. This literature contained a host of seemingly contradictory results: stress can either enhance, suppress, or not affect tumor development or immune function (e.g. Jensen, 1968; Newberry and Sengbush, 1979; Nieburgs et al., 1977; Riley, 1981; Sklar and Anisman, 1981).


Opioid Peptide Footshock Stress Mammary Tumor Development Intermittent Footshock Focal Electrical Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akil, H., Madden, J., Patrick, R.L., and Barchas, J.D., 1976, Stress-induced increase in endogenous opiate peptides; concurrent analgesia and its partial reversal by naloxone, in: “Opiates and Endogenous Opioid Peptides”, H.W. Kosterlitz, ed., Elsevier, Amsterdam.Google Scholar
  2. Akil, H., Shiomi, H., and Matthews, J., 1985, Induction of the intermediate pituitary by stress: Synthesis and release of a nonopioid form of ß-endorphin. Science, 227: 424–426.CrossRefGoogle Scholar
  3. Besedovsky, H., Del Re, A., Sorkin, E., Da Prada, M., Burri, R., and Honegger, C., 1983, The immune response evokes changes in brain noradrenergic neurons. Science, 221: 564–566.PubMedCrossRefGoogle Scholar
  4. Bogden, A.E., Taylor, D.J., Kuo, E.Y.H., Mason, M.M., and Speropoulos, A., 1974, The effect of perphesazine-induced serum prolactin reponse on estrogen primed mammary tumor-host systems, 13762 and R-35 mammary adenocarcinoma. Cancer Res., 34: 3018–3025.PubMedGoogle Scholar
  5. Brechner, T., Motyka, D., and Sherman, J.E., 1983, Growth enhancement of a prolactin-sensitive mammary tumor by periaqueductal gray stimulation. Life Sci., 32: 525–530.PubMedCrossRefGoogle Scholar
  6. Brown, S.M., Stimmel, B., Taub, R.N., Kochwa, S., and Rosenfield, R.E., 1974, Immunologic dysfunction in heroin addicts. Arch. Intern. Med., 134: 1001–1006.CrossRefGoogle Scholar
  7. Chang, K.-J., 1984, Opioid peptides have actions on the immune system. TINS, 7: 234–235.Google Scholar
  8. Cherubin, C.E. and Brown, J., 1968, Systemic infection in heroin addicts. Lancet, 1: 298–299.CrossRefGoogle Scholar
  9. Cherubin, C.E. and Millian, S.J., 1968, Serologic investingations in narcotic addicts I. Ann. Intern. Med., 69: 739–742.Google Scholar
  10. Cross, R.J., Brooks, W.H., Roszman, T.L., and Markesbery, W.R., 1982, Hypothalamic-immune interactions: effect of hypophysectomy on neuroimmunomodulation. J. Neurol. Sci., 53: 557–566.PubMedCrossRefGoogle Scholar
  11. Faith, R.E., Liang, H.J., Murgo, A.J., and Plotnikoff, N.P., 1984, Neuroimmunomodulation with enkephalins: Enhancement of human natural killer (NK) cell activity in vitro. Clin. Immun. Immunopath., 31: 412–418.PubMedCrossRefGoogle Scholar
  12. Froelich, C.J., and Bankhurst, A.D., 1984, The effect of ß-endorphin on natural killer cytotoxicity and antibody dependent cellular cytotoxicity. Life Sci., 35: 261–265.PubMedCrossRefGoogle Scholar
  13. Gilman, S.C., Schwartz, J.M., Milner, R.J., Bloom, F.E., and Feldman, J.D., 1982, ß-endorphin enhances lymphocyte proliferative reponses.Proc. Natl. Acad. Sci. ( USA ), 79: 4226–4230.PubMedCrossRefGoogle Scholar
  14. Hayes, R.L., Bennett, G.J., Newlon, P.G., and Mayer, D.J., 1978, Behavioral and physiological studies of non-narcotic analgesia in the rat elicited by certain environmental stimuli. Brain Res., 155: 69–90.Google Scholar
  15. Ho, W.K.K., and Leung, A., 1979, The effect of morphine addiction on concanavalin A mediated blastogenesis. Pharmacol. Res. Commun., 1: 413–419.CrossRefGoogle Scholar
  16. Herberman, R.B., and Ortaldo, J.R., 1981, Natural killer cells: Their role in defenses against disease. Science, 214: 24–30.PubMedCrossRefGoogle Scholar
  17. Jensen, M.M., 1968, Influence of stress on murine leukemia virus infection. Proc. Soc. exp. Biol. Med., 127: 610–614.Google Scholar
  18. Kay, N., Allen, J., and Morley, J.E., 1984, Endorphins stimulate normal human peripheral blood lymphocyte natural killer activity. Life Sci., 35: 53–59.PubMedCrossRefGoogle Scholar
  19. Kreider, J.W., Bartllet, G.L., Purnell, D.M., and Webb, S., 1978, Immunotherapy of an established rat mammary adenocarcinoma (13762A) with intratumor injection of Corynebacterium parvum. Cancer Res., 38: 689–692.PubMedGoogle Scholar
  20. Laudenslager, M.L., Ryan, S.M., Drugan, R.C., Hyson, R.L., and Maier, S.F., 1983, Coping and immunosuppression: Inescapable but not escapable shock suppresses lymphocyte proliferation. Science, 221: 568–570.PubMedCrossRefGoogle Scholar
  21. Lewis, J.W., Cannon, J.T., and Liebeskind, J.C., 1980, Opioid and nonopioid mechanisms of stress analgesia. Science, 208: 623–625.PubMedCrossRefGoogle Scholar
  22. Lewis, J.W., Shavit, Y., Terman, G.W., Gale, R.P., and Liebeskind, J.C., 1983a, Stress and morphine affect survial of rats challenged with a mammary ascites tumor (MAT 13762B). Nat. Immun. Cell Growth Regul., 3: 43–50.Google Scholar
  23. Lewis, J.W., Shavit, Y., Terman, G.W., Nelson, L.R., Gale, R.P., and Liebeskind, J.C., 1983b, Apparent involvement of Opioid peptides in stress-induced enhancement of tumor growth. Peptides, 4: 635–638.PubMedCrossRefGoogle Scholar
  24. Lewis, J.W., Sherman, J.E., and Liebeskind, J.C., 1981, Opioid and nonopioid stress analgesia: assessment of tolerance and cross-tolerance with morphine, J. Neurosci., 1: 358–363.PubMedGoogle Scholar
  25. Lewis, J.W., Tordoff, M.G., Liebeskind, J.C., and Viveros, 0.H., 1982a, Evidence for adrenal medullary opioid involvement in stress analgesia. Soc. Neurosci. Abstr., 8: 778.Google Scholar
  26. Lewis, J.W., Tordoff, M.G., Sherman, J.E., and Liebeskind, J.C., 1982b, Adrenal enkephalin-like peptides may mediate opioid stress analgesia. Science, 217: 557–559.PubMedCrossRefGoogle Scholar
  27. Maier, S.F. and Seligman, M.E.P., 1976, Learned helplessness: Theory and evidence. J. exp. Psychol. Gen., 105: 3–46.CrossRefGoogle Scholar
  28. Maier, S.F., Sherman, J.E., Lewis, J.W., Terman, G.W., and Liebeskind, J.C., 1983, The opioid/nonopioid nature of stress-induced analgesia and learned helplessness. J. exp. Psychol. Anim. Behay., 9: 80–90.CrossRefGoogle Scholar
  29. Martin, F.C., Shavit, Y., Terman, G.W., Pechnick, R.N., Oh, C., and Liebeskind, J.C., 1985, Stereospecificity of opiate immunosuppression in rats. Soc. Neurosci. Abstr., 11.Google Scholar
  30. Mathews, P.M., Froelich, C.J., Sibbit Jr., W.L., and Bankhurst, A.D., 1983, Enhancement of natural cytoxicity by ß-endorphin. J. Immunol., 130: 1658–1662.PubMedGoogle Scholar
  31. McCain, H.W., Lamster, I.B., Bozzone, J.M., and Grbic, J.T., 1982, ß-endorphin modulates human immune activity via non-opiate receptor mechanisms. Life Sci., 31: 1619–1624.PubMedCrossRefGoogle Scholar
  32. Newberry, B.H., and Sengbush, L., 1979, Inhibitory effects of stress on experimental mammary tumors. Cancer Detect. Prevent., 2: 225–233.Google Scholar
  33. Nieburgs, H.E., Weiss, J., Navarrete, M., Grillone, G., and Siedlecki, B., 1977, Inhibitory and enhancing effects of various stress on experimental mammary tumorigenesis. Cancer Detect. Prevent., 2: 463–470.Google Scholar
  34. Plotnikoff, N.P., and Miller, G.C., 1983, Enkephalins as immunomodulators. Int. J. Immunopharmac., 5: 437–441.CrossRefGoogle Scholar
  35. Ragavan, V., and Frantz, A.G., 1981, Suppression of serum prolactin by naloxone but not anti-ß-endorphin antiserum in stressed and unstressed rats. Life Sci., 28: 921–929.CrossRefGoogle Scholar
  36. Riley, V., 1981, Psychoneuroendocrine influences on immunocompetence and neoplasia. Science, 212: 1100–1109.PubMedCrossRefGoogle Scholar
  37. Shavit, Y., Depaulis, A., Terman, G.W., Martin, F.C., Gale, R.P., and Liebeskind, J.C., 1985.Fed. Proc, 44: 1489.Google Scholar
  38. Shavit, Y., Lewis, J.W., Terman, G.W., Gale, R.P., and Liebeskind, J.C., 1983a, The effects of stress and morphine on immune function in rats. Soc. Neurosci. Abstr., 9: 117.Google Scholar
  39. Shavit, Y., Lewis, J.W., Terman, G.W., Gale, R.P., and Liebeskind, J.C., 1983b, Endogenous opioids may mediate the effects of stress on tumor growth and immune function. Proc. West. Pharmacol. Soc., 26: 53–56.PubMedGoogle Scholar
  40. Shavit, Y., Lewis, J.W., Terman, G.W., Gale, R.P., and Liebeskind, J.C., 1984, Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity. Science, 223: 188–190.PubMedCrossRefGoogle Scholar
  41. Shavit, Y., Ryan, S.M., Lewis, J.W., Laudenslager, M.L., Terman, G.W., Maier, S.F., Gale, R.P., and Liebeskind, J.C., 1983c, Inescapable but not escapable stress alters immune function. The Physiologist, 26:A-64.Google Scholar
  42. Shavit, Y., Terman, G.W., Martin, F.C., Gale, R.P., and Liebeskind, J.C., 1984b, Naltrexone-sensitive suppression of the immune system’s natural killer cells by morphine. Soc. Neurosci. Abstr., 10: 726.Google Scholar
  43. Siegel, R.A., Chowers, I., Conforti, N., Feldman, S., and Weidenfeld, J., 1982, Effects of naloxone on basal and stress-induced ACTH and corticosterone secretion in the male rat–site and mechanism of action. Brain Res., 249: 103–109.PubMedCrossRefGoogle Scholar
  44. Simon, R.H., Lovett, E.J. III, Tomaszek, D., and Lundy, J., 1980, Electrical stimulation of the midbrain mediates metastatic tumor growth. Science, 209: 1132–1133.PubMedCrossRefGoogle Scholar
  45. Sklar, L.S., and Anisman, H., 1979, Stress and coping factors influence tumor growth. Science, 205: 513–515.PubMedCrossRefGoogle Scholar
  46. Sklar, L.S., and Anisman, H., 1981, Stress and cancer. Psychol. Bull, 89: 369–406.PubMedCrossRefGoogle Scholar
  47. Stein, M., Keller, S.E., and Schleiffer, S.J., 1982, The role of brain and the neuroendocrine system in immune regulation - potential links to neoplastic diseases. In: Biological Mediators of Behavior and Disease: Neoplasia, S. Levy, ed., Elsevier, N.Y.Google Scholar
  48. Tubaro, E., Borelli, G., Croce, C., Cavallo, G., and Santiangli, C., 1983, Effect of morphine on resistance to infection. J. Infect. Dis., 148: 656–666.PubMedCrossRefGoogle Scholar
  49. Visintainer, M.A., Volpicelli, J.R., and Seligman, M.E.P., 1982, Tumor rejection in rats after inescapable or escapable shock. Science, 216: 437–439.PubMedCrossRefGoogle Scholar
  50. Weber, R.J. and Pert, C.B., 1984, Opiatergic modulation of the immune system, in: “Central and Peripheral Endorphins: Basic and Clinical Aspects”, E.E. Muller and A.R. Genazzani, eds., Raven Press, New York.Google Scholar
  51. Wybran, J., 1985, Enkephalins and endorphins as modifiers of the immune system: Present and future. Fed. Proc., 44: 92–94.PubMedGoogle Scholar
  52. Zagon, I.S., and McLaughlin, P.J., 1981, Heroin prolongs survival time and retards tumor growth in mice with neuroblastoma. Brain Res. Bull., 7: 25–32.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • James W. Lewis
    • 1
  • Yehuda Shavit
    • 1
  • Fredricka C. Martin
    • 1
  • Gregory W. Terman
    • 1
  • Robert P. Gale
    • 1
  • John C. Liebeskind
    • 1
  1. 1.Departments of Psychology and MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations