Exercise Stress and Endogenous Opiates

  • Peter Farrell
  • Anthony Gustafson


The use of exercise to reveal physiological responses and adaptations has a long history. Exercise can be quantified and repeated exertion markedly alters body functions. Well established exercise procedures such as the use of an individual’s aerobic capacity have allowed exercise stress to be used as an experimental model to investigate the endogenous opiate system. A vast literature had accumulated prior to 1975 concerning the physiological effects of morphine. When the endogenous opiates were discovered’, researchers already had insights into probable functions of the endogenous opiates. Therefore, it is not surprising that many possible roles for endorphins/enkephalins have been studied using the exercise model.


Locomotor Activity Adrenal Medulla Opiate Receptor Spontaneous Locomotor Activity Morphine Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hughes, J.T.W. Smith, H. Kosterlitz, L.A. Forthergill, B.A. Morgan and H.R. Harris. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258: 577–579, 1975.PubMedCrossRefGoogle Scholar
  2. Goldstein, A. and P. Sheenan. Tolerance to opioid narcotics. I. Tolerance to the “Running Fit” caused by levorphanol in the mouse. J. Pharmacol. and Exp. Therapeutics. 169:2, 175–184, 1969.Google Scholar
  3. Babbini, M. and W.H. Davis. Time-dose relationships for locomotor activity effects of morphine after acute or repeated treatment. Br. J. Pharmac. 46:213–214, 1972.Google Scholar
  4. Browne, R.G. and D.S. Segal. Behavioral activating effects of opiates and opioid peptides. Biol. Psychiat. 15:77–86, 1980.Google Scholar
  5. 5.
    Drust, E.G. and I.L. Crawford. Comparison of the Effects of TRH and D1-Ala2-Metenkephalinamide on hippocampal electrical activity and behavior in the unanesthetized rat. Peptides. 4: 239–243, 1983.Google Scholar
  6. 6.
    Oka, T. and E. Hosoya. Effects of humoral modulators and naloxone on morphine-induced changes in spontaneous locomotor activity of the rat. Psychoparmacol. 47, 243–248, 1976.Google Scholar
  7. Katz, R.J., B.J. Carroll and G. Baldrighi. Behavioral activation by enkephalins in mice. Pharmacol. Biochem. Behavior. 8, 493–496, 1978.Google Scholar
  8. Amir, S., Z.H. Galina, R. Blair, Z.W. Brown and Z. Amit. Opiate receptors may mediate the suppressive but not the excitatory action of ACTH on motor activity in rats. Eur. J. Pharmacol. 66:307–313, 1980.Google Scholar
  9. Castellano, C. Strain dependent effects of the enkephalin analogue FK 33–824 on locomotor activity in mice. Pharmacol. Biochem. Behay. 15:729–734, 1981.Google Scholar
  10. Castellano, C. and S. Puglisi-Allegra. Effects of naloxone and naltrexone on locomotor activity in C57B1/6 and DBA/2 mice. Pharmacol. Biochem. Behay. 16:561–563, 1982.Google Scholar
  11. Walker, J.M., G.G. Berntson, T.S. Paulucci and T.C. Champney. Blockade of endogenous opiates reduces activity in the rat. Pharmacol. Biochem. Behay. 14:113–116, 1981.Google Scholar
  12. 12.
    Castellano, C. and A. Oliverio. A genetic analysis of morphine-induced running and analgesia in the mouse. Psychopharmacologica. 41: 197–200, 1975.Google Scholar
  13. 13.
    Oliverio, A. and C. Castellano. Genotype-dependent sensitivity and tolerance to morphine and herion dissociation between opiate-induced running and analgesia in the mouse. Psychopharmacologica 39: 13–22, 1974.Google Scholar
  14. 14.
    Castanas, E., P. Giraud, Y. Audigier, R. Drissi, F. Boudouresque, B. Conte-Devolx and C. Oliver. Opiate binding sites spectrum on bovine adrenal medullas and six human pheochromocytomas. Life Sciences 33: Supp. 1, 295–298, 1983.CrossRefGoogle Scholar
  15. 15.
    Christie, M.J. and G. Chesher. Physical dependence on physiologically released endogenous opiates. Life Sciences 30: 1173–1177, 1982.Google Scholar
  16. Christie, J.J., G.B. Chesher and K.D. Bird. The correlation between swim-stress induced antinociception and [PH] Leu-enkephalin binding to brain homogenates in mice. Pharmac. Biochem. Behay. 15:853–857, 1981.Google Scholar
  17. 17.
    Christie, H.J., P. Trisdikoon and G.B. Chesher. Tolerance and cross-tolerance with morphine resulting from physiological release of endogenous opiates. Life Sciences. 31: 839–845, 1982.Google Scholar
  18. 18.
    Shyu, B.C., S.A. Anderson and P.Toren. Endorphin-mediated increase in pain threshold induced by long-lasting exercise in rats. Life Sciences 30: 833–840, 1982.PubMedCrossRefGoogle Scholar
  19. 19.
    Pert, C.B. and D.L. Bowie. Behavioral manipulation of rats causes alterations in opiate receptor occupancy. In: E. Usdin, W.E. Bunney and N.S. Kline (Eds.) Endorphins in mental health research, 1979, New York: Oxford University Press, 93–104.Google Scholar
  20. 20.
    Metzer, J.M. and E.A. Stein. 8-endorphin and sprint training. Life Sciences 34: 1541–1547, 1984.CrossRefGoogle Scholar
  21. 21.
    Evans, C.J., E. Erdelyi, E. Weber, J.D. Barchas. Identification of pro-opiomelanocortin-derived peptides in the human adrenal medulla. Science 221: 957–960, 1983.PubMedCrossRefGoogle Scholar
  22. 22.
    Linnoila, R.I., R.P. Diaugustine; A. Hervonen and R.J. Miller. Distribution of [Mets]- and [Leu5]-enkephalin-, vasoactive intestinal polypeptide-and substance P-like immunoreactivities in human adrenal glands. Neuroscience 5: 2247–2259, 1980.Google Scholar
  23. Lundberg, J.H., B. Hamberger, M. Schultzberg, T. Höfelt, P.O. Grandbert, S. Efendic, L. Terenius, M. Goldstein and R. Luft. Enkephalin-and somatostatin-like immunoreactivities in human drenal medulla and pheochromocytoma. Proc. Natl. Acad. Sci. 76:4079–4083, 1979.Google Scholar
  24. 24.
    Quirion, R., M.S. Finkel, F.A.O. Mendelson and N. Zamir. Localization of opiate binding sites in kidney and adrenal gland of the rat. Life Sciences. 33: Supp. 1, 299–302, 1983.Google Scholar
  25. Schultzberg, M., T. Höfelt, J.H. Lundberg, L. Terenius, L.G. Elfvin and R. Elde. Enkephalin-like immunoreactivity in nerve terminals in sympathetic ganglia and adrenal medulla and in adrenal medullary gland cells. Acta. Physiol. Scand. 103:475–477, 1978.Google Scholar
  26. 26.
    Viveros, 0.H., E.J. Diliberto, E. Hazum and K.J. Chang. Enkephalins as possible adrenomedullary hormones: storage, secretion, and regulation of synthesis. In: Neural peptides and neuronal communication, ed. by E. Costa and M. Trabucchi. Raven Press, N.Y., vol. 22, 191–204, 1980.Google Scholar
  27. Viveros, O.H., E.J. Diliberto, E. Hazum and K.J. Chang. Opiate-like materials in the adrenal medulla: evidence for storage and secretion with catecholamines. Mol. Pharmacol. 16:1101–1108, 1979.Google Scholar
  28. 28.
    Viveros, 0.H., S.P. Wilson, E.J. Diliberto, E. Hazum. K.J. Chang. Enkephalins in adrenomedullary chromaffin cells and sympathetic nerves. Adv. Physiol. Sci. Vol. 14. Endocrinology, neuroendocrinology, neuropeptides-11, ed. by E. Stark, G.B. Markara, B. Halasz, G. Rappoy, 349–353.Google Scholar
  29. 29.
    Yoshimasa, T., K. Nakao, Y. Ikeda, M. Sakamoto, M. Suds and H. Imura. Methionine-enkephalin, Leucine-enkephalin, methionine-enkephalin-Arg6-Phe7 and methionine-enkephalin-Arg6-Gly7-Leu8 in human pheochromocytoma. Life Sciences. 33: 85–88, 1983.PubMedCrossRefGoogle Scholar
  30. 30.
    Kumakura, K., A. Guidotti, H.Y.T. Yang, L. Saiani and E. Costa. A role for the opiate peptides that presumably coexist with acetylcholine in splanchnic nerves. in: Neuronal Peptides and Neuronal Communication ed. W. Costa and M. Trabucchi, Raven Press, New York, 1980, P. 571–580.Google Scholar
  31. 31.
    Gustafson, A.B., P.A. Farrell, T. Garthwaite and R. Kalkhoff. Endogenous opiates modulate the plasma epinephrine response to submaximal exercise in man. Exerpta Medica International Congress Series 652:682, abstract 843, 1984.Google Scholar
  32. 32.
    Grossman, A., P. Bouloux, P. Price, P.L. Drury, K.S.L. Lam, T. Turner, J. Thomas, G.M. Besser and J.R. Sutton. Role of opioid peptides in the hormonal responses to acute exercise in man. Clinical Science 67: 483–491, 1984.Google Scholar
  33. 33.
    Galbo, H. Hormonal and metabolic adaptation to exercise. Georg. Thieme Verlag, Stuttgart, 1983.Google Scholar
  34. Kelso, T.B., W.G. Herbert, F.C. Gwazdauskas, F.L. Goss and J.L. Hess. Exercise-thermoregulatory stress and increased plasma B-endorphin/B-lipotropin in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 57:444–449, 1984.Google Scholar
  35. 35.
    Janal, M.N., E.W.D. Colt, W.C. Clark and M.Glusman. Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: Effects of naloxone, Pain 19: 13–25, 1984.PubMedCrossRefGoogle Scholar
  36. 36.
    Elliot, D.L., L. Goldberg, W.J. Watts and E. Orwoll. Resistance exercise and plasma beta-endorphin/beta lipotropin immunoreactivity. Life Sciences 34: 515–518, 1984.Google Scholar
  37. Farrell, P.A., W.K. Gates, W.P. Morgan, and M.G. Maksud. Increases in plasma B-endorphin/B-lipotropin immunoreactivity after treadmill running in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52(5): 1245–1249, 1982.Google Scholar
  38. 38.
    Fraioli, F., C. Moretti, D. Paolucci, E. Alicicco, F. Crescenzi, and G. Fortunio. Physical exercise stimulates marked concomitant release of 8-endorphin and adrenocortiocotropic hormone (ACTH) in peripheral blood in man. Experientia 36: 987–989, 1980.Google Scholar
  39. 39.
    Colt, W.D., S.L. Wardlow, and A.G. Frantz. The effect of running on plasma 8-endorphin. Life Science 28: 1637–1640, 1981.Google Scholar
  40. Carr, D.B., B.A. Bullen, G.S. Skrinor, M.A. Arnold, M. Rodenblatt, I.Z. Beitins, J.B. Martin and J.W. McArthur. Physical conditioning facilitates the exercise-induced secretion of Beta-endorphin and Beta-lipotropin in women. N. Eng. J. Med. 305:560–562, 1981.Google Scholar
  41. Gambert, S.R., T.L. Garthwaite, C.H. Pontzer, E.E. Cook, F. Tristani, E.H. Duthie, D.R. Martinson, T.C. Hagen and D.J. McCarty. Running elevates plasma B-endorphin immunoreactivity and ACTH in untrained human subjects. Proc. Soc. Exp. Biol. Med. 168:1–4, 1981.Google Scholar
  42. Yamaguchi, H., A.S. Liotla and D.T. Krieger. Simultaneous determination of human plasma immunoreactive B-Lipotropin, y-Lipotropin, and 8-Endorphin using immune-affinity chromatography. J. Clin. Endocrinol. Metab. 51:1002–1008, 1980.Google Scholar
  43. Li, C.H., A.J. Rao, B.A. Doneen and D. Yamashiro. 8-Endorphin: Lack of correlation between opiate activity and immunoreactivity in radioimmnoassay. Biochem. Biophys. Res. Commun. 75:576–590, 1977.Google Scholar
  44. Haber, D., D.P. Pickar, R.A. Dionne, D.L. Bowie, B.A. Ewols, T.W. Moody, M.G. Sable and C.B. Pert. Assay of endogenous opiate receptor ligands in human CSF and plasma. Sub. Alcohol Act./Misuse. 1:113–118, 1980.Google Scholar
  45. 45.
    Farrell, P.A., W.G. Gates, W.P. Morgan and C.B. Pert. Leucine Enkephalin-like radioreceptor activity and tension–anxiety before and after competitive running. In: Biochemistry of Exercise ed. H.G. Knuttgen, J.A. Vogel and J. Poortmans. Human Kinetics Publishers, Champaign, Illinois, 637–644, 1983.Google Scholar
  46. Winder W.W., R.C. Hickson, J.M. Hagberg, A.A. Ehsoni and J.A. McLane. Training-induced changes in hormonal and metabolic responses to submaximal exercise. J. Abel. Physiol. Respirat. Environ. Exercise Physiol. 46:766–771, 1979.Google Scholar
  47. Bullen, B.A., G.S. Skrinor, I.Z. Beitins, D.B. Carr, S.K. Reppert, C.O. Dodson, M. deM. Fencl, E.V. Gervino and J.W. McArthur. Endurance training effects on plasma hormonal responsiveness and sex hormone excretion. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56:1453–1463, 1984.Google Scholar
  48. Kaymakcalan, S. and L.A. Woods. nalorphine-induced abstinence syndrome in morphine tolerant rats. J. Pharmac. Exp. Ther. 117:112–116, 1956.Google Scholar
  49. 49.
    Martin, W.R., A. Wikler, C.G. Eades and F.T. Pescor. Tolerance to and physical dependence on morphine in rats. Psychoparmacologia 4: 247–260, 1963.Google Scholar
  50. McMurray, R.G., D.S. Sheps and D.M. Guinan. Effects of naloxone on maximal stress testing in females. J. Appl. Physiol. Respirat. Envion. Exercise Physiol. 56:436–440, 1984.Google Scholar
  51. 51.
    Eiden, L.E. and J.A. Ruth. Enkephalins modulate the responsiveness of rat atria in vitro to norepinephrine. Peptides. 3: 475–478, 1982.Google Scholar
  52. 52.
    Haier, R.J., K. Quaid, and J.C. Mills. Naloxone alters pain perception after jogging. Psychiatry Research 5: 231–232, 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Peter Farrell
    • 1
  • Anthony Gustafson
    • 2
  1. 1.Department of Human KineticsUniversity of Wisconsin-MilwaukeeUSA
  2. 2.Endocrine Metabolic SectionMedical College of WisconsinUSA

Personalised recommendations