The Influence of Endogenous Opioid Peptides on Venous Granulocytes

  • Eike G. Fischer
  • Nora E. Falke


Ameboid migrating phagocytes represent a phylogenetically ancient defense system. Amebocytes are found throughout the animal kingdom. All functions of the PMNs (aggregation, adherence, polarization, chemokinesis, chemotaxis, phagocytosis, pinocytosis, endocytosis, exocytosis) are primitive functions, as they occur in most of the protozoa. In mammals they appear in all embryonic cells and in some of the differentiated cells.


Nerve Growth Factor Polymorphonuclear Leukocyte Opioid Peptide Opiate Receptor Cell Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cohnheim J., 1867, Ueber Entzündung and Eiterung. Virchow“s Arch.path.Anat.40:l-79Google Scholar
  2. Cohnheim J., 1969, Ueber das Verhalten der fixen Bindegewebskörperchen bei der Entzündung. Virchow“s Arch.path.Anat.45. 4: 333–350Google Scholar
  3. Davis B.H., Walter R.J., Pearson C.B., Becker E.L. and Oliver J.M., 1982, Membrane actitity and topolography of f-Met-Leu-Phe-treated polymorphonuclear leukocytes. Am. J.Pathol. 108: 206–216Google Scholar
  4. Falke N.E. and Fischer E.G., 1985, Cell shape of polymorphonuclear leukocytes is influenced by oipids.Google Scholar
  5. Fischer E.G. and Falke N.E., 1984, ß-Endorphin modulates immune functions–A review. Psychother.Psychosom. 42: 195–204PubMedCrossRefGoogle Scholar
  6. Gee A.P., Boyle M.D.P., Munger K.L., Lawman M.J.P. and Young M., 1983, Nerve growth factor: Stimulation of polymorphonuclear leukocyte chemotaxis in vitro. Proc.Natl.Acad.Sci.USA 80: 7215–7218Google Scholar
  7. Goldman R., Bar-Shavit Z. and Romeo D., 1983, Neurotensin modulates human neutrophil locomotion and phagocytic capability. FEBS Lett. l59: 63–67CrossRefGoogle Scholar
  8. Gyires K., Budavarit I., Fürst S. and Molnar I., 1985, Morphine inhibits the carrageenan-induced oedema and the chemoluminescence of leucocytes stimulated by zymosan. J.Pharm.Pharmaco1. 37: 100–104CrossRefGoogle Scholar
  9. Hazum E., Chang K.J. and Cuatrecasas P., 1979, Specific nonopiate receptors for ß-endorphin. Science 205: 1033–1035PubMedCrossRefGoogle Scholar
  10. Keller H.U., Wilkinson P.C., Abercrombie M., Becker E.L., Hirsch J.G., Miller M.E., Ramsey W.S. and Zigmond S.H., 1977, A proposal for the definiton of terms related to locomotion of leucocytes and other cells. Clin.exp.Immuno1. 27: 377–380Google Scholar
  11. Keller H.U., Hess M.W. and Cottier H., 1982, Leucocyte activation and the assessment of leucocyte locomotion and chemotaxis. Adv.Exp.Med.Biol. 141: 9–17PubMedCrossRefGoogle Scholar
  12. Leber T., 1888, Ueber die Entstehung der Entzündung und die Wirkung der entzündungserregenden Schädlichkeiten. Fortschr.Med. 6: 460–464Google Scholar
  13. Lopker A., Abood L.G., Hoss W. and Lionetti F.J., 1980, Stereoselective muscarinic acetylcholine and opiate receptors in human phagocytic leukocytes. Biochem.Pharmaco1. 29: 1361–1365CrossRefGoogle Scholar
  14. McCutcheon M., 1946, Chemotaxis in leukocytes. Physiol.Rev. 26: 319–336PubMedGoogle Scholar
  15. Saland L.C., van Epps D.E., Ortiz E. and Samora A., 1983, Acute injection of opiate peptides into the rat cerebral ventricle: A macrophage-like cellular response. Brain Res.Bull. 10: 523–528Google Scholar
  16. Shavit Y., Lewis J.W., Terman G.W., Gale R.P. and Liebeskind J.C., 1984, Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity. Science 223: 188–190PubMedCrossRefGoogle Scholar
  17. Showell H.J., Freer R.J., Zigmond S.H., Schiffmann E., Aswanikumar S., Corcoran B. and Becker E.L., 1976, The structure-activity relations of synthetic peptides as chomotactic factors and inducers of lysosomal enzyme secretion for neutrophils. J.Exp.Med. 143: 1154–1169PubMedCrossRefGoogle Scholar
  18. Simpkins C.O., Dickey C.A. and Fink M.P., 1984, Human neutrophil migration is enhanced by beta-endorphin. Life-Sci. 34: 2251–2255PubMedCrossRefGoogle Scholar
  19. Spielberg I., Mandell B., Mehta J., Sullivan T. and Simchowitz L., 1978, Dissociation of the neutrophil functions of exocytosis and chemotaxis. J.Lab.Clin.Med. 92: 297–302Google Scholar
  20. Stanley T.H., Hill G.E., Portas M.R., Hogan N.A. and Hill H.R., 1976, Neutrophil chemotaxis during and after general anesthesia and operation. Anesth.Analg., Cleveland 55: 668–673Google Scholar
  21. van Epps D.E., Saland L., Taylor C. and Williams R.C., 1983, In vitro and in vivo effects of ß-endorphin and Met-enkephalin on leukocyte locomotion. Prog.Brain Res. 59: 361–374PubMedCrossRefGoogle Scholar
  22. van Epps D.E. and Saland L., 1984, ß-Endorphin and Met-enkephalin stimulate human peripheral blood mononuclear cell chemotaxis. J.Immunology 132: 3046–3053Google Scholar
  23. Waller A., 1846, Microscopic examination of some of the principal tissues of the animal frame, as observed in the tongue of the living frog, toad, and c. Philosophical Magazine, London 29:271–287 and Microscopic observation on the perforation of the capillaries by the corpuscles of the blood, and on the origin of mucus and pus-globules.: 397–405Google Scholar
  24. Zigmond S.H., 1977, Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J.Cell Bio1. 75: 606–616CrossRefGoogle Scholar
  25. Zigmond S.H. and Sullivan S.J., 1979, Sensory adaptation of leukocytes to chemotactic peptides. J.Cell Bio1. 82: 517–527CrossRefGoogle Scholar
  26. Zucker-Franklin D., Elsbach P. and Simon E.J., 1971, The effect of the morphine analog levorphanol on phagocytosing leukocytes. Lab.Invest. 25: 415–421PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Eike G. Fischer
    • 1
  • Nora E. Falke
    • 1
  1. 1.Sekt. ElektronenmikroskopieUniversität UlmUlmFed.Rep.Germany

Personalised recommendations