Candidate Opioid Peptides for Interaction with the Immune System

  • Christopher J. Evans
  • Elizabeth Erdelyi
  • Jack D. Barchas


Endogenous opioids are a recently discovered group of peptides which have been implicated as modulators of a number of biological systems. Both opiate receptors and their peptide ligands are widely distributed throughout the CNS and are additionally located in some peripheral sites. The classical effects of opiates as analgesics have perhaps overshadowed many other important biological activities of this group of neuroactive peptides. This book provides strong indications that endogenous opioid peptides play a crucial role in the regulation of the immune system.


Adrenal Medulla Opioid Peptide Anterior Lobe Endogenous Opioid Peptide Intermediate Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austen, B. M., Evans, C. J., and Smyth, D.G., 1979, Susceptibility of neuroactive peptides to aminopeptidase digestion is related to molecular size, Biochem. Biophys. Res. Commun., 91: 1211.Google Scholar
  2. Bradbury, A. F., Smyth, D. G., Snell, C. R., Deakin, W., and Wendlandt, S., 1977, Comparison of the analgesic properties of lipotropin C-fragment and stabilized enkephalins in the rat, Biochem. Biophys. Acta, 74: 748.Google Scholar
  3. Brown, S. M., Stimmel, B., Taub, R. N., Kochwa, S., and Rosenfield, R. E., 1974, Immunologic dysfunction in heroin addicts, Arch Intern Med. 134: 1001.Google Scholar
  4. Comb, M., Seeburg, P. H., Adelman, J., Eiden, L., and Herbert, E, 1982, Primary structure of the human met-and leu-enkephalin precursor and its mRNA, Nature 295: 663.PubMedCrossRefGoogle Scholar
  5. Depelchin, A., and Letesson, J. J., 1981, Adrenaline influence on the immune response. I. Accelerating or suppressor effects according to the time of application, Imnunol. Lett., 3: 199.Google Scholar
  6. Eipper, B., and Mains, R., 1980, Structure and biosynthesis of pro-adrenocorticotropin/endorphin and related peptides, Endo. Rev., 1: 1.Google Scholar
  7. Evans, C. J., Erdelyi, E., Weber, E., and Barchas, J. D., 1983, Identification of pro-opiomelanocortin derived peptides in the human adrenal medulla, Science, 221: 957.PubMedCrossRefGoogle Scholar
  8. Evans, C. J., Lorenz, R., Weber, E., and Barchas, J. D., 1982, Variants of alpha-melanocyte stimulating hormone in rat brain and pituitary: evidence that acetylated a-MSH exists only in the intermediate lobe of pituitary, Biochem. Biophys. Res. Commun., 106: 910.Google Scholar
  9. Evans, C. J., Erdelyi, E., Makk, G., and Barchas, J. D., 1985, Identification of a novel proenkephalin derived peptide in brain and adrenal, Abstract #69, FASEB Meeting, Anaheim, CA 1985.Google Scholar
  10. Forfis, G., Medgyesi, G. A., Gyimesi, E., and Hauck, M., 1984Google Scholar
  11. Met-enkephalin induced alterations of macrophage functions, Mol. Immuno., 21: 747.Google Scholar
  12. Geisow, M. J., Deakin, J. F. W., Dostrovsky, J. O., and Smyth, D. G., 1977, Analgesic activity of lipotropin C fragment depends on carboxyl terminal tetrapeptide, Nature, 269: 167.PubMedCrossRefGoogle Scholar
  13. Hazum, E., Chang, K. J., and Cuatrecasas, P., 1979, Specific nonopiate receptors for beta-endorphin, Science, 205: 1033.PubMedCrossRefGoogle Scholar
  14. Hökfelt, T., Fahrenkrug, J., Tatemoto, K., Mutt, V., Werner, S., Hulting, A.-L., Terenius, L., and Chang, K. J., 1983, The PHI (PHI-27)/corticotropin-releasing factor/enkephalin immunoreactive hypothalamic neuron: Possible morphological basis for integrated control of prolactin, corticotropin, and growth hormone secretion. Proc. Natl. Acad. Sci. USA, 80: 895.Google Scholar
  15. Jones, B. N., Shively, J. E., Kilpatrick, D. L., Kojima, K., and Udenfriend, S., 1982, Enkephalin biosynthetic pathway: AGoogle Scholar
  16. -dalton adrenal polypeptide that terminates at its COOH end with the sequence [Metlenkephalin-Arg-Gly-Leu-COOH, Proc. Natl. Acad. Sci. USA, 79: 1313.Google Scholar
  17. Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., Asai, M., inayama, S., Nakanishi, S., and Numa, S., 1982, Cloning and sequence analysis of cDNA for porcine ß-neo-endorphin/dynorphin precursor, Nature, 298: 245.PubMedCrossRefGoogle Scholar
  18. Lindberg, I., Yang, H-Y. T., and Costa, E., 1983, A high molecular weight form of Met5Arg6Gly7Leu8 in rat brain and bovine chromaffin granules. Life Sci., 33 (Suppl): 5.PubMedCrossRefGoogle Scholar
  19. Liotta, A. S., Suda, T., and Krieger, D. T., 1978, ß-Lipotropin is the major opioid-like peptide of human pituitary and rat pars distalis: Lack of significant 8-endorphin, Proc. Natl. Acad. Sci. USA, 75: 2950.Google Scholar
  20. Lolait, S. J., Lim, A. T., Toh, B. H., and Funder, J. W., 1984, Immunoreactive beta-endorphin in a subpopulaticn of mouse spleen macrophages, J. Clin. Invest., 73: 277.Google Scholar
  21. Martin, R., Geis, R., Holl, R., Schaffer, M., and Voigt, K. H., 1983, Co-existence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophyses: Immunoreactive methionine-enkephalin-, leucine-enkephalin- and cholesystokinin-like substances, Neurosci., 8: 213.Google Scholar
  22. Martin, R., and Voigt, K. H., 1981, Enkephalins co-exist with oxytocin and vasopressin in nerve terminals of rat neurohypophysis, Nature 289: 502.PubMedCrossRefGoogle Scholar
  23. Matsuo, H., Miyata, A., and Mizuno, K., 1983, Novel C-terminally amidated opioid peptide in human phaeochromocytoma tumour, Nature 305: 721.PubMedCrossRefGoogle Scholar
  24. McCain, H. W., Lamster, I. B., Bozzone, J. M., and Grbic, J. T., 1982, Beta-endorphin modulates human immune activity via non-opiate receptor mechanisms, Life Sci., 31: 1619.PubMedCrossRefGoogle Scholar
  25. Munck, A., Guyre, P. M., and Holbrook, N. J., 1984, Physiological functions of glucocorticoids in stress and their relation to pharmacological actions, Endocrin. Rev., 5: 25.Google Scholar
  26. Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C. Y., Cohen, S. N., and Numa, S., 1979, Nucleotide sequence of cloned cDNA for bovine corticotropin-8-lipotropin precursor, Nature, 278: 423.PubMedCrossRefGoogle Scholar
  27. Nakao, K., Yoshimasa, T., Ohtsuki, H., Oki, S., Tanaka, I., Nakai, Y., and Imura, H., 1981, f3-Endorphin, ACTH and y-MSH in human sympathoadrenal system, Presented at the Eighth International Congress of Pharmacology, Tokyo.Google Scholar
  28. Noda, M., Furatani, Y., Takahashi, H., Toyosato, M., Hirose, T., Inayama, S., Nakanishi, S., and Numa, S., 1982, Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin, Nature 295: 202.PubMedCrossRefGoogle Scholar
  29. O’Donohue, T. L., and Dorsa, D. M., 1982, The opiomelanotropinergic neuronal and endocrine systems, Peptides, 3: 353.PubMedCrossRefGoogle Scholar
  30. Przewlocki, R., Millan, M. J., Gramsch, G. H., and Millan, M. H., 1982, The influence of selective adeno-and neurointermedio-hypophysectomy upon plasma and brain levels of f3-endorphin and their response to stress in rats, Brain Res., 242: 107.PubMedCrossRefGoogle Scholar
  31. Rehfeld, J. F., 1981, Four basic characteristics of the gastrin cholecystokinin system, Am. J. Physiol., 240: 6255.Google Scholar
  32. Roth, K. A., Evans, C. J., Lorenz, R. G., Weber, E., Barchas, J. D., and Chang, J.-K., 1983, Identification of gastrin releasing peptide-related substances in guinea pig and rat brain. Biochem. Biophys. Res. Commun., 112: 528.Google Scholar
  33. Seizinger, B. R., Liebisch, D. C., Gramsch, C., Herz, A., Weber, E., Evans, C. J., Esch, F. S., and Bohlen, P., 1985, Isolation and structure of a novel C-terminally amidated opioid peptide, amidorphin, from bovine adrenal medulla, Nature, 313: 57.PubMedCrossRefGoogle Scholar
  34. Sonders, M., Barchas, J. D., and Weber, E., 1984, Regional distribution of metorphamide in rat and guinea pig brain, Biochem. Biophys. Res. Commun., 222: 892.Google Scholar
  35. Steiner, D. F., Kemmler, W., Tager, H. S., and Peterson, J. D., 1974Google Scholar
  36. Proteolytic processing in the biosynthesis of insulin and other proteins, Fed. Proc., 33: 2105.Google Scholar
  37. Stern, A. S., Jones, B. N., Shively, J. E., Stein, S., and Udenfriend, S., 1981, Two adrenal opioid polypeptides: proposed intermediates in the processing of proenkephalin. Proc. Natl. Acad. Sci. USA, 78: 1962.Google Scholar
  38. Viveros, O. H., Diliberto, E. J ., Hazum, E., and Chang, K-J., 1979, Opiate-like materials in the adrenal medulla: Evidence for storage and secretion with catecholamines, Mol. Pharm., 16: 1101.Google Scholar
  39. Weber, E., Evans, C. J., and Barchas, J. D., 1983b, Multiple endogenous ligands for opioid receptors, Trends in Neuroscience, 6: 333.CrossRefGoogle Scholar
  40. Weber, E., Evans, C. J., and Barchas, J. D., 1982a, opioid peptide dynorphin: predominance of the aminoterminal octapeptide fragment in rat brain regions, Nature, 299: 77.Google Scholar
  41. Weber, E., Evans, C. J., Chang, J-K., and Barchas, J. D., 1982b, Antibodies specific for a -N-acetyl (3-endorphins: Radioimmunossays and detection of acetylated f3-endorphins in pituitary extracts, J. Neurochem., 38, 436.PubMedCrossRefGoogle Scholar
  42. Weber, E., Esch, F. S., Bohlen, P., Paterson, S., Corbett, A. D., McKnight, A. T., Kosterlitz, H. W., Barchas, J. D., and Evans, J. C., 1983a, Metorphamide: Isolation, structure and biologic activity of a novel amidated opioid octapeptide from bovine brain, Proc. Natl. Acad. Sci. USA, 80: 7362.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Christopher J. Evans
    • 1
  • Elizabeth Erdelyi
    • 1
  • Jack D. Barchas
    • 1
  1. 1.Nancy Pritzker Laboratory of Behavioral Neurochemistry , Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordUSA

Personalised recommendations