Enkephalins as Molecules of Lymphocyte Activation and Modifiers of the Biological Response

  • Joseph Wybran


In these recent years, a new stream of investigation has emerged which tightens narrowly the relations existing between the central nervous system, the endocrine system and the immune system through the action of endogenous opioid peptides like enkephalins and endorphins. In the present review, we will attempt to summarize the data related only to the actions of enkephalins upon the immune system.


Natural Killer Opioid Peptide Mast Cell Degranulation Natural Killer Activity Endogenous Opioid Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wybran, J., Appelboom, T., Famaey, J.P. Govaerts, A. (1979). Suggestive evidence for morphine and methionine-enkephalin receptors-like on normal blood T lymphocytes. J. Immunol. 123, 1068–1070.Google Scholar
  2. 2.
    Hazum, E., Chang, K.J., Cautrecasas, P. (1979). Specific nonopiate receptors for 8-endorphins. Science 205, 1033–1035.PubMedCrossRefGoogle Scholar
  3. 3.
    Wybran J., Dupont E. (1982). The active T rosette: an early marker for T-cell activation. Ann. Immunol. ( Paris ) 133, 211–218.Google Scholar
  4. 4.
    Mehrishi J.N., Mills, I.H. (1983). Opiate receptors on lymphocytes and platelets in man. Clin. Immmunol. Immunopathol. 27, 240–249.Google Scholar
  5. 5.
    Johnson, H.M., Smith, E.M., Torres, B.A., Blalock, J.E. (1983). Regulation of the in vitro antibody response by neuroendocrine hormones. Proceedings of the National Academy of Sciences. 79, 4171–4174.CrossRefGoogle Scholar
  6. 6.
    Miller G.C., Murgo, A.J., Plotnikoff, N.P. (1984). Enkephalins: enhancement of active T cell rosettes from normal volunteers. Clin. Immunol. Immunopathol. 31, 132–137.Google Scholar
  7. 7.
    Miller, G.C., Murgo, A.J., Plotnikoff, N.P. (1983). Enkephalinsenhancement of active T-cell rosettes from lymphoma patients. Clin. Immunol. Immunopathol. 26, 446–451.Google Scholar
  8. 8.
    Murgo, A.J., Plotnikoff, N.P., Faith, R.E. (1985). Effect of Methionine-Enkephalin plus ZnClz on active T cell rosettes. Neuropeptides, 5, 367–370.PubMedCrossRefGoogle Scholar
  9. 9.
    Wvbran, J., Appelboom, T., Govaerts, A. (1978). Inosiplex, a stimulating agent for normal human T cells and human leucocytes. J. Immunol. 121, 1184–1187.Google Scholar
  10. 10.
    Wybran, J., Levin, A.S., Fudenberg, H.H., Goldstein, A.L. (1975). Thymosin: effects on normal human blood T cells. Ann. N.Y. Acad. Sci. 249, 300–307.Google Scholar
  11. 11.
    Wybran, J., Appelboom, T., Famaey, J.P., Govaerts, A. (1980). Receptors for morphine and methionin-enkephalin on human T lymphocytes: the two hits opioid lymphocyte receptor hypothesis. Serrou, B., Rosenfeld, C., eds. New Trends in Human Immunology and Cancer Immunotherapy. Paris, Doin Publishers, 48–55.Google Scholar
  12. 12.
    Gilman, S.C., Schwartz, J.M., Milner, R.J., Bloom, F.E., Feldman, J.D. (1982). 8-Endorphin enhances lymphocyte proliferative responses. Proceedings of the National Academy of Sciences 79, 4226–4230.Google Scholar
  13. 13.
    Plotnikoff, N.P., Miller, G.C. (1983). Enkephalins as immunomodulators. Int. J. Immunopharmacol. 5, 437–441.Google Scholar
  14. 14.
    Wybran, J. (1985). Enkephalins and endorphins as modifiers of the immune system: present and future. Fed. Proc. 44, 92–94.Google Scholar
  15. 15.
    Mathews, P.M., Froelich, C.J., Sibbitt, W.L.,Jr., Bankhurst, A.D. (1983). Enhancement of natural cytotoxicity by 8-endorphin. J. Immunol. 130, 1658–1662.PubMedGoogle Scholar
  16. 16.
    Wybran, J. (1985). Enkephalins and endorphins: activation molecules for the immune system and natural killer activity? Neuropeptides. 5, 371–374.PubMedCrossRefGoogle Scholar
  17. 17.
    Faith, R.E., Liang, J.H., Murgo, A.J., Plotnikoff, N.P. (1984). Neuroimmunomodulator with enkephalins: enhancement of human natural killer (NK) cell activity in vitro. Clin. Immunol. Immunopathol. 31, 412–418.Google Scholar
  18. 18.
    Wybran, J., Schandené, L.: in preparation.Google Scholar
  19. 19.
    Shavit, Y., Lewis, J.W., Terman, G.W., Gale, R.P., Liebeskind, J.C. (1984). Opioid peptides mediate the suppressive effect of stress on natural killer cytotoxicity. Science. 223, 188–190.PubMedCrossRefGoogle Scholar
  20. 20.
    Lewis, J.W., Shavit, Y., Terman, G.W., Gale, R.P., Liebeskind, J.C. Stress and morphine affect survival of rats challenged with a mammary ascites tumor (MAT 13762B). Nat. Immunol. Cell. Reg. (in press).Google Scholar
  21. 21.
    Zagon, I.S., McLaughin, P.J. (1981). Heroin prolong survival time and retard tumor growth in mice with neuroblastoma. Brain Res. Bull. 7, 25–32.Google Scholar
  22. 22.
    Zagon, I.S., McLaughin, P.J. (1983). Naltrexone modulates tumor response in mice with neuroblastoma. Science. 221, 671–673.PubMedCrossRefGoogle Scholar
  23. 23.
    Van Epps, D.E., Saland, L. (1984). I3-endorphin and Met-Enkephalin stimulate human peripheral blood mononuclear cell chemotaxis. J. Immunol. 132, 3046–3053.PubMedGoogle Scholar
  24. 24.
    Foris, G., Medgyesi, G.A., Gyimesi, E., Hauck M. (1984). Met-Enkephalin induced alterations of macrophage function. Molecul. Immunol. 21, 747–750.Google Scholar
  25. 25.
    Lopker, A.L., Abood, G., Hass, W., Lionetti, F. (1980). Stereo-selective muscarine acetylcholine and opiate receptors in human phagocytic leucocytes. Biochem. Pharmacol. 29, 1361–1365.Google Scholar
  26. 26.
    Casale, T.B., Bowman, S., Kaliner, M. (1984). Induction of human cutaneous mast cell degranulation by opiates and endogenous opioid peptides: evidence for opiate and nonopiate receptor participation. J. Allergy Clin. Immunol. 73, 775–781.Google Scholar
  27. 27.
    Plotnikoff, N.P., Murgo, A.J., Faith, R.E. (1984). Neuroimmunomodulation with enkephalins: effects on thymus and spleen weight in mice. Clin. Immunol. Immunopathol. 32, 52–56.Google Scholar
  28. 28.
    Lipinski, M., Braham, K., Cailland, J.M., Carlu, C., Tursz, T. (1983). HNK-1 antibody detects an antigen expressed on neuroectodermal cells. J. Exp. Med. 158, 1775–1780.Google Scholar
  29. 29.
    Kruse, J., Mailhammer, R., Wernecke, H., Faissner, A., Sommer, I., Goridis, C., Schachner, M. (1984). Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature. 311, 153–155.PubMedCrossRefGoogle Scholar
  30. 30.
    Leifer D., Lipton, S.A., Barnstable, C.J., Masland, R.H. (1984). Monoclonal antibody of Thy-1 enhances regeneration of processes by rat ganglional cells in culture. Science. 224, 303–306.PubMedCrossRefGoogle Scholar
  31. 31.
    Lampson, L., Fisher, C.A. (1984). Weak HLA and ßq microglobulin expression of neuronal cell lines can be modulated by interferon. Proceed. Nat. Acad. Sci. 81, 6476–6480.Google Scholar
  32. 32.
    Bockman,D.E., Kirby, M.L. (1984). Dependence of thymus development on derivates of the neural crest. Science. 223, 498–500.CrossRefGoogle Scholar
  33. 33.
    Wybran, J., Schandené, L.: in preparation.Google Scholar
  34. 34.
    Plotnikoff, N.P., Miller, G.C., Nimeh, N.F.: in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Joseph Wybran
    • 1
  1. 1.Department of Immunology, Hematology and Transfusion Erasme HospitalUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations