Enkephalins: Mediators of Stress-Induced Immunomodulation

  • Anthony J. Murgo
  • Robert E. Faith
  • Nicholas P. Plotnikoff


It is well known that environmental stress can influence the immune response and tumor growth (1). Although stress has usually been associated with detrimental effects on the host, under certain experimental conditions of timing and duration of stressful stimuli. immunoenhancement and inhibition of tumor growth can result (1,2.3,4). In addition, stress brings about numerous biochemical changes including the release of neurotransmitters, corticosteroids, and other hormones that can have various effects on the immune system and which may be benificial or detrimental to the host (5,6,7).


Opioid Receptor Natural Killer Cell Activity Opioid Peptide Endogenous Opioid Opiate Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Riley. Pyschoneuroendocrine influences on immunocompetence and neoplasia, Science 212: 1100 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    A.A. Monjan and M.I. Collector. Stress induced modulation of the immune response. Science 196: 307 (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    H.A. Rashkis, Systemic stress as an inhibitor of experimental tumors in Swiss mice, Science 116: 169 (1952).PubMedCrossRefGoogle Scholar
  4. 4.
    A. AmKraut and G.F. Solomon, Stress and murine sarcoma virus (Moloney)-induced tumors. Cancer gee. 32: 1428 (1972).Google Scholar
  5. 5.
    A.W. Coquelin and R.A. Gorski, Neuroendocrine control, stress. and immunity, ia: “Stress. Immunity, and Aging,” E.L. Cooper, ed., Dekker. New York (1984).Google Scholar
  6. 6.
    J. Ahlqvist. Hormonal influences on immunologic and im: “Psychoneuroimmunology,” R. Ader. ed., Academic Press, New York (1981).Google Scholar
  7. 7.
    N.R. Hall and A.L. Goldstein. Neurotransmitters and j,a. “Psychoneuroimmunology,” R. Ader, ed., Academic Press, New York (1981).Google Scholar
  8. 8.
    R. Guillemin, T. Vargo, J. Rossier, S. Minick, N. Ling, C. Rivier, W. Vale, and F. Bloom. Beta-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland, Science 197: 1367 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Amir. Z.W. Brown. and Z. Amit, The role of endorphins in stress: Evidence and speculations, Neurosci. Siobehay. Rev. 4: 77 (1980)CrossRefGoogle Scholar
  10. 10.
    G.W. Terman, Y. Shavit, J.W. Lewis, J.T. Cannon, and J.C. Liebeskind, Intrinsic mechanisms of pain inhibition: activation by stress. Science 226: 1270 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    O.H. Viveros. E.J. Diliberto. E. Hazum, and K-J. Chang, Opiate-like materials in the adrenal medulla: evidence for storage and secretion with catecholamines, Mal. Pharmacol. 16: 1101 (1979).Google Scholar
  12. 12.
    W.R. Martin, Pharmacology of Opioids. Pharmacol. Rey. 35: 283 (1984).Google Scholar
  13. 13.
    J. Wybran, T. Appelboom. J-P. Famaey. and A. Govaerts, Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T lymphocytes. 1. Immuno.l 123: 1068 (1979).Google Scholar
  14. 14.
    H.H. Fudenberg, J. Wybran, and D. Robbins, T-rosette-forming cells. cellular immunity and cancer, R. $ngl. 1. Me. 292: 475 (1975).Google Scholar
  15. 15.
    G.C. Miller, A.J. Murgo, and N.P. Plotnikoff, Enkephalins:enhancement of active T-cell rosettes from normal volunteers. S1ia. Imm mal. Immvnpathol. 31: 132 (1984).CrossRefGoogle Scholar
  16. 16.
    S.C. Gilman. J.M. Schwartz. R.J. Milner. F.E. Bloom, and J.D. Feldman, Beta-endorphin enhances lymphocyte proliferative responses, Proc,. Natl. Acad. ac,. (USA) 79: 4226 (1982).CrossRefGoogle Scholar
  17. 17.
    D.E. Van Epps and L. Saland, Beta-endorphin and met-enkephalin stimulate human peripheral blood mononuclear cell chemotaxis, Immuno.l. 132: 3046 (1984).Google Scholar
  18. 18.
    R.E. Faith, H. J. Liang. A.J. Murgo. and N.P. Plotnikoff, Neuroimmunomodulation with enkepahlins: enhancement of human natural killer (MK) cell activity in vitro, S.1i.m. lmmanol Iminunopathol. 31: 412 (1984).Google Scholar
  19. 19.
    G.C. Miller, A. J. Murgo. and N.P. Plotnikoff. Enkephalins: enhancement of active T-cell rosettes from lymphoma patients. çlin. Immnol. Immunopathol. 26: 446 (1983).CrossRefGoogle Scholar
  20. 20.
    N.P. Plotnikoff. Enkephalins-Endorphins: Emotional stress. depression and immune system, Pyschpharmacol. Bull. in press (1985).Google Scholar
  21. 21.
    K. Stengaard-Pedersen. Inhibition of enkepahlin binding to opiate receptors by zinc ions: possible physiological importance in the brain. Arta. pharmacol. at.toxicol. 50: 213 (1982).Google Scholar
  22. 22.
    A.J. Murgo. N.P. Plotnikoff and R.E. Faith. Effect of methionineenkephalin plus Zn-C12 on active T cell rosettes, Neuropeptides 5: 367 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    R.O. Williams and L.A. Loeb. Zinc requirement for DNA replication in stimulated human lymphocytes. 1. çe11 Dial. 58: 594 (1973).Google Scholar
  24. 24.
    M. Dardenne, J-M, Pleas. B. Nabarra. P. Lefrancier. M. Derrien. J. Choay.and J-F, Bach, Contribution of zinc and other metals to the biological activity of the serum thymic factor, Prnc Natl. Arai. $ci. (USA) 79: 5370 (1982).CrossRefGoogle Scholar
  25. 25.
    R.J. McDonough, J.J. Madden. A. Falek. D.A. Shafer. M. Pline. D. Gordon, P. Bokos, J.C. Kuehnle, and J. Mendelson, Alteration of T and null lymphocyte frequencies in the peripheral blood of human opiate addicts in vivo evidence for opiate receptor sites on T lymphocytes. 2. Immunol. 125: 2539 (1980).Google Scholar
  26. 26.
    J.N. Mehrishi and I.H. Mills, Opiate receptors on lymphocytes and platelets in man. Clin. Immunol. Immunopathol. 27: 240 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    E. Hazum, K-J Chang. and P. Cuatrecasas, Specific nonopiate receptors for beta-endorphin, Science 205: 1033 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    H.M. Johnson, E.M. Smith, B.A. Torres, and J.E. Blalock, Regulation of the im vivo antibody response by neuroendocrine hormones, Proc. Natl. Agad. $.j. (USA) 79: 4171 (1982).CrossRefGoogle Scholar
  29. 29.
    A. Herz, Multiple endorphins and natural ligands of multiple opioid receptors, in, “Central and Peripheral endorphins: Basic and Clinical Aspects,” E.E. Miller and A.R. Genazzini, ed., Raven Press. New York (1984).Google Scholar
  30. 30.
    A. Lopker, L.G. Abood.W. Hoss, and F.J. Lionetti, Stereoselective muscarinic acetylcholine and opiate receptors in human phagocytic leukocytes, Bioche. Pharmacol 29: 1361 (1980).CrossRefGoogle Scholar
  31. 31.
    L. Schweigerer, H. Teschemacher, and S. Bhakdi. Interaction of human beta-endorphin with the terminal SC56–9 and “preterminal” SC56–7 and SC5b-8 complexes of human complement. Life Sci. 31: 2275 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    L. Schweigerer, S. Bhakdi. and H. Teschemacher. Specific non-opiate binding sites for human beta-endorphin on the terminal complex of human complement. Nature 296: 5857 (1982).CrossRefGoogle Scholar
  33. 33.
    A. Reches, A. Eldor, Z. Vogel, and Y. Salomon, Do human platelets have opiate receptors?, Nature 288: 382 (1980).PubMedCrossRefGoogle Scholar
  34. 34.
    L.G. Abood, H.G. Atkinson, and M. MacNeil. Stereospecific opiate binding in human erythrocyte membranes and changes in heroin addicts,, I. Neurosci. Res. 2: 427 (1976).CrossRefGoogle Scholar
  35. 35.
    Y. Yamasaki and E.L. Way. Possible inhibition of CA++ pump of rat erythrocyte ghosts by opioid K agonists. Ufa S i. 33:723 (Sup. I, 1983 ).Google Scholar
  36. 36.
    N.P. Plotnikoff and G.C. Miller, Enkephalins as immunomodulators, Il. I. jnialnopharmacoL. 5: 437 (1983).Google Scholar
  37. 37.
    H.W. McCain. I.B. Lamster; J.M. Bozzone, and J.T. Grbic, Beta-endorphin modulates human immune activity via non-opiate receptor mechanisms, Life S ç i. 31: 1619 (1982).CrossRefGoogle Scholar
  38. 38.
    J. Wybran, Enkephalins and endorphins as modifiers of the immune system: present and future. Ems. Proc. 44: 92 (1985).Google Scholar
  39. 39.
    G. Bocchini, G. Bonanno. and A. Canevari, Influence of morphine and naloxone on human peripheral blood T-lymphocytes, Drug Alcohol Depend. 11: 233 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    N. Hanna, Role of natural killer cells in host defense against cancer metastasis, im. “Cancer Invasion and Metastatic Biologic and Therapeutic Aspects.” G.L. Nicolson and L. Milas, ed. Raven Press. New York (1984).Google Scholar
  41. 41.
    Fodstad, C.T. Hansen, G.B. Cannon, C.N. Statham, G.R. Lichtenstein, and N.R. Boyd, Lack of correlation between natural killer activity and tumor growth control in nude mice with different immune defects, Cancer ups. 44: 4403 (1984).Google Scholar
  42. 42.
    R.B. Herberman and H.T. Holden, Natural cell-mediated immunity, Adv,. Çancer Rea. 27: 305 (1978).Google Scholar
  43. 43.
    R.J. Cross, W.R. Markesbery, W.H. Brooks, and T.L. Roszman, Hypothalamic-immune interactions: neuromodulation of natural killer activity by lesioning of the anterior hypothalamus, Immaaal. 51: 399 (1984).Google Scholar
  44. 44.
    Y. Shavit, J.W. Lewis, G.W. Terman, R.P. Gale, and J.C. Liebeskind, Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity, Science 223: 188 (1984).PubMedCrossRefGoogle Scholar
  45. 45.
    P.M. Mathews, C.J. Froelich, W.L. Sibbitt, and A.D. Bankhurst, Enhancement of natural cytotoxicity by beta-endorphin,, I. Immunol. 130: 1658 (1983).Google Scholar
  46. 46.
    C.J. Froelich and A.D. Bankhurst, The effect of beta-endorphin on natural cytotoxicity and antibody dependent cellular cytotoxicity, Life Sci. 35: 261 (1984).PubMedCrossRefGoogle Scholar
  47. 47.
    N. Kay, J. Allen, and J.E. Morley, Endorphins stimulate normal human peripheral blood lymphocyte natural killer activity, Life Sci. 35: 53 (1984).PubMedCrossRefGoogle Scholar
  48. 48.
    R.E. Faith, H.J. Liang, N.P. Plotnikoff, A.J. Murgo, and N.F. Nimeh, Neuroimmunomodulation with enkephalins: in vitro enhancement of natural killer (NK) cell activity in peripheral blood lymphocytes from cancer patients, Nat. Imm. Cell Growth Reg. in press.Google Scholar
  49. 49.
    N.P. Plotnikoff, et al, this book.Google Scholar
  50. 50.
    D. Zucker-Franklin, P. Elsbach, and E.J. Simon, The effect of the morphine analog levorphanol on phagocytosing leukocytes: a morphologic study, Lab Invest. 25: 415 (1971).PubMedGoogle Scholar
  51. 51.
    E. Tubaro, G. Borelli, C. Croce, G. Cavallo, and C. Santiangeli, Effect of morphine on resistance to infection, 2. Infect. Dis. 148: 656 (1983).CrossRefGoogle Scholar
  52. 52.
    A.E. Panerai, A. Martini. A. DeRosa, F. Salerno. A.M. DiGiulio, and P. Mantegazza, Plasma beta-endorphin and met-enkephalin in physiological and pathological conditions, in., “Regulatory Peptides: From molecular biology to function,” E. Costa and M. Trabucchi, ed., Raven Press, New York (1982).Google Scholar
  53. 53.
    D.E. VanEpps and L. Saland, Beta-endorphin and met-enkephalin stimulate human peripheral blood mononuclear cell chemotaxis, I. Immunol. 132: 3046 (1984).Google Scholar
  54. 54.
    L.C. Saland, D.E. VanEpps, E. Ortiz, and A. Samora, Acute injections of opiate peptides into the rat cerebral ventricle: a macrophage-like cellular response, Drain Rea. Bull. 10: 523 (1983).CrossRefGoogle Scholar
  55. 55.
    C.O. Simpkins, C.A. Dickey, and M.P. Fink, Human neutrophil migration is enhanced by beta-endorphin, Life 5.6. 34: 2251 (1984).Google Scholar
  56. 56.
    E.G. Fischer and N.E. Falke, Beta-endorphin modulates immune functions: a review, Isychother. psyr.hnsom. 42: 195 (1984).Google Scholar
  57. 57.
    G. Foris, G.A. Medgyesi, E. Gyimesi, and M. Hauck, Met-enkephalin induced alterations of macrophage functions, Mal. Immunol. 21: 747 (1984).CrossRefGoogle Scholar
  58. 58.
    M.R. Ruff and C.B. Pert, Neuropeptides as chemoattractants for human macrophages, Froc First International Workshop on Neuroimmmunomodulation, in press (1985).Google Scholar
  59. 59.
    G.C. Miller, A. J. Murgo. and N.P. Plotnikoff, The influence of leucine and methionine enkephalin on immune mechanisms, Int. i. munopharmacol. 4: 367 (1982).Google Scholar
  60. 60.
    Y. Yamasaki, 0. Shimamura, A. Kizu, M. Nakagawa, and H. Ijichi, IgEmediated 14C-serotonin release from rat mast cells modulated by morphine and endorphins. Life 31: 471 (1982).Google Scholar
  61. 61.
    E.M. Kukain, R.K. Muceniece, and V.E. Klusha. Comparison of neuro-and immunomodulator properties of low-molecular-weight neuropeptides. Bull. B4m. Biol. Mai. 94: 1105 (1982).CrossRefGoogle Scholar
  62. 62.
    N.P. Plotnikoff, A.J. Murgo, and R.E. Faith, Neuroimmunomodulation with enkephalins: effects on thymus and spleen weights in mice. fin. Immynol. Immunopathol. 32: 52 (1984).CrossRefGoogle Scholar
  63. 63.
    N.P. Plotnikoff. A.J. Murgo. G.C. Miller, C.N. Corder, and R.E. Faith, Enkephalins: immunomodulators, Ee$. Froc. 44: 118 (1985).Google Scholar
  64. 64.
    J.E. Blalock and E.M. Smith, A complete regulatory loop between the immune and neuroendocrine systems. Fed Froc. 44: 108 (1985).Google Scholar
  65. 65.
    S.J. Lolait. A.T.W. Lim. B.H. Toh, and J.W. Funder, Immunoreactive beta-endorphin in a subpopulation of mouse spleen macrophages, L. Clin. Invest. 73: 277 (1984).CrossRefGoogle Scholar
  66. 66.
    W. Savino and M. Dardenne. Enkephalin immunohistochemical detection in human thymic epithelial cells. Prnc. First Internat Workshop Q11 Beuroimmunomodulation. in press (1985).Google Scholar
  67. 67.
    S.M. Brown, B. Stimmel, R.N. Taub, S. Kochwa. and R.E. Rosenfield, Immunologic dysfunction in heroin addicts, Arsh. Intern. Ned. 134: 1001 (1974).Google Scholar
  68. 68.
    R.E. Faith. N.P. Plotnikoff, and A.J. Murgo. Effects of opiates and Neuropeptides on immune functions, in: “Mechanisms of Tolerance and Dependence. C.W. Sharp. ed. NIDA Research Monograph 54, Rockville. MD (1984).Google Scholar
  69. 69.
    I.S. Zagon and P.J. McLaughlin, Heroin prolongs survival time and retards tumor growth in mice with neuroblastoma, Brain Res. Bull. 7: 25 (1981).PubMedCrossRefGoogle Scholar
  70. 70.
    I.S. Zagon and P.J. McLaughlin, Naloxone prolongs the survival time of mice treated with neuroblastoma. kife.Sci. 28: 1095 (1981).Google Scholar
  71. 71.
    I.S. Zagon and P.J. McLaughlin. Naltrexone modulates tumor response in mice with neuroblastoma, Science 221: 671 (1983).PubMedCrossRefGoogle Scholar
  72. 72.
    I.S. Zagon and P.J. McLaughlin, Duration of opiate receptor blockade determines tumorigenic response in mice with neuroblastoma: a role for endogenous opioid systems in cancer, Life Sci. 35: 409 (1984).PubMedCrossRefGoogle Scholar
  73. 73.
    C.F. Aylsworth. C.A. Hodson. and J. Meites. Opiate antagonists can inhibit mammary tumor in rats, troc. Soc. Bxp BiQ.l. Z1d. 161: 18 (1979).Google Scholar
  74. 74.
    J.W. Lewis, Y. Sharit. G.W. Terman. L.R. Nelson, R.P. Gale, and J.C. Liebeskind. Apparent involvement of opioid peptides in stress-induced enhancement of tumor growth, Peptides 4: 635 (1983).PubMedCrossRefGoogle Scholar
  75. 75.
    J.W. Lewis. Y. Shavit.G.W. Terman.R.P. Gale, and J.C. Liebeskind. Stress and morphine affect survival of rats challenged with a mammary ascites tumor (MAT 13762B). Nat. Immug. Cell Growth Rev]. 3:43 (1983/84).Google Scholar
  76. 76.
    A.A-B Badawy, M. Evans, N.F. Punjani. and C.J. Morgan, Does naloxone always act as an opiate antagonist? Life. Sci. 33:739 (Sup. I. 1983 ).Google Scholar
  77. 77.
    N.P. Plotnikoff, Abba J. Kastin, D.H. Coy, C.W. Christensen. A.V. Schally. and M.A.Spirtes, Neuropharmacological actions of enkephalin after systemic administration. Life Sci. 19: 1283 (1976).PubMedCrossRefGoogle Scholar
  78. 78.
    A.J. Murgo. Modualtion of tumor growth in mice treated with methionine-enkephalin and corticosterone. Proc. First Internat. Workshop 4a Neuroimmunomodulation, in press (1985).Google Scholar
  79. 79.
    A.J. Murgo, Inhibition of B16 melanoma growth in mice by methionineenkephalin..i Hall Cancer Instit. in press (1985).Google Scholar
  80. 80.
    D.D. Von Hoff and B. Forseth. Modulation of growth of human and murine tumors by human beta-endorphin. Pros. Amer. Assoc. Cancer Res. 23: 236 (1982).Google Scholar
  81. 81.
    C.I. Thompson. J.W. Kreider. P.L. Black. T.J. Schmidt, and D.L. Margules. Genetically obese mice: resistance to metastasis of B16 melanoma and enhanced T-lymphocyte mitogenic responses. Science 220: 1183 (1983).PubMedCrossRefGoogle Scholar
  82. 82.
    P.L. Black. M. Holly, C.I. Thompson. and D.L. Margules. Enhanced tumor resistance and immunocompetence in obese (ob/ob) mice, Life Sci. 33:715 (Sup. I. 1983 ).Google Scholar
  83. 83.
    N.P. Plotnikoff. R.E. Faith, A.J. Murgo. and G.C. Miller. Enkephalins: immunomodulators and antitumor activities, Prnc. First Internat. Workshop Qn Heuroimmunomodulation in press (1985).Google Scholar
  84. 84.
    C.Y. Hung. S.S. Lefkowitz. and W.F. Geber. Interferon inhibition by narcotic analgesics. P. ro. Sac, F.xpa, RigL. Med,. 142: 106 (1973).Google Scholar
  85. 85.
    S.L. Brown and D.E. Van Epps, Beta-endorphin, EMet]enkephalin and corticotrophin modulate the production of gamma interferon in vitro, F.ed. Proceed. (abst.). 44:949 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Anthony J. Murgo
    • 1
  • Robert E. Faith
    • 2
  • Nicholas P. Plotnikoff
    • 3
  1. 1.West Virginia University Medical CenterMorgantownUSA
  2. 2.University of HoustonHoustonUSA
  3. 3.Oral Roberts University School of MedicineTulsaUSA

Personalised recommendations