Inositol Lipid Metabolism in Receptor-Stimulated and Depolarized Sympathetic Ganglia and Adrenal Glands

  • Robert H. Michell
  • Elisabeth A. Bone
Conference paper
Part of the FIDIA Research Series book series (FIDIA, volume 4)

Abstract

Recent investigations of the classical phosphatidylinositol response, first described in exocrine pancreas and brain by Hokin and Hokin in 1953 and later extensively characterised by the same workers, have identified a widespread receptor-stimulated signalling process that is important to the regulation of processes as diverse as fibroblast growth, hormone secretion, activation of the immune system, vision in horseshoe crabs, and fertilization in toads. The central reaction of this signalling system is hydrolysis of PtdIns(4, 5)P 2 to 1, 2-DAG and Ins(1, 4, 5)P 3, with both products acting as cellular second messengers, 1, 2-DAG activates a protein kinase (protein kinase C, Nishizuka, 1984) and Ins(1, 4, 5)P 3 mobilizes Ca2+ from an intracellular membrane-sequestered pool (Berridge and Irvine, 1984). The development of these ideas can be traced in numerous reviews since 1975 (Michell, 1975, 1979, 1982a; Michell et al., 1977, 1981, 1984; Berridge, 1980, 1981, 1984; Downes and Michell, 1982, 1985; Nishizuka, 1984; Berridge and Irvine, 1984).

Keywords

Hydrolysis Angiotensin Catecholamine Neuroblastoma Atropine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ang VTY and Jenkins JS (1984) J Clin Endocrinol Metab 58: 688–691.PubMedCrossRefGoogle Scholar
  2. Berridge MJ (1980) Trends Pharmacol Sci 1: 419–420.CrossRefGoogle Scholar
  3. Berridge MJ (1981) Mol Cell Endocrinol 24: 115–140.PubMedCrossRefGoogle Scholar
  4. Berridge MJ (1984) Biochem J 220: 345–360.PubMedGoogle Scholar
  5. Berridge MJ and Irvine RF (1984) Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  6. Berridge MJ, Downes CP and Hanley MR (1982) Biochem J 206: 587–595.PubMedGoogle Scholar
  7. Bone EA and Michell RH (1985) Biochem J 227: 263–269.PubMedGoogle Scholar
  8. Bone EA, Fretten P, Palmer S, Kirk CJ and Michell RH (1984) Biochem J 221: 803–811.PubMedGoogle Scholar
  9. Bonner TI and Brownstein MJ (1984) Nature 310: 17.PubMedCrossRefGoogle Scholar
  10. Brown KD, Blay J, Irvine RF, Heslop JP and Berridge MJ (1984) Biochem Biophys Res Commun 123: 377–384.PubMedCrossRefGoogle Scholar
  11. Cowley AW and Barber BJ (1983) In: Cross BA and Leng C (eds): The Neurohypophysis: Structure, Function and Control. Elsevier, Amsterdam, pp. 415–424.CrossRefGoogle Scholar
  12. Creba JA, Downes CP, Hawkins PT, Brewster G, Michell RH and Kirk CJ (1983) Biochem J 212: 733–747.PubMedGoogle Scholar
  13. Downes CP (1982) Cell Calcium 3: 413–428.PubMedCrossRefGoogle Scholar
  14. Downes CP (1984) Trends Pharmacol Sci 6: 313–316.Google Scholar
  15. Downes CP and Michell RH (1982) Cell Calcium 3: 467–502.PubMedCrossRefGoogle Scholar
  16. Downes CP and Michell RH (1985) In: Cohen P and Houslay MD (eds): Molecular Aspects of Cellular Regulation, Vol 4, Molecular Mechanisms of Transmembrane Signalling. Elsevier/North Holland, Amsterdam, pp. 3–56.Google Scholar
  17. Hawthorne JN and Pickard MR (1979) J Neurochem 32: 5–14.PubMedCrossRefGoogle Scholar
  18. Hawthorne JN and Swilem AF (1982) Cell Calcium 3: 351–358.PubMedCrossRefGoogle Scholar
  19. Hokin LE (1965) Proc Natl Acad Sci USA 53: 1369–1376.PubMedCrossRefGoogle Scholar
  20. Hokin LE (1969) In: Bourne G (ed): Structure and Function of Nervous Tissue. Vol 3. Academic Press, New York, pp. 161–184.Google Scholar
  21. Hokin MR, Benfey BG and Hokin LE (1958) J Biol Chem 233: 814–817.PubMedGoogle Scholar
  22. Hokin MR, Hokin LE and Shelp WD (1960) J Gen Physiol 44: 217–226.PubMedCrossRefGoogle Scholar
  23. Irvine RF, Letcher AJ, Lander DJ and Downes CP (1984) Biochem J 223: 237–243.PubMedGoogle Scholar
  24. Irvine RF, Anggard EE, Letcher AJ and Downes CP (1985) Biochem J, 229: 505–512.PubMedGoogle Scholar
  25. Joseph SK and Williams RJ (1985) FEBS Lett 180: 150–154.PubMedCrossRefGoogle Scholar
  26. Kirk CJ, Rodrigues LM and Hems DA (1979) Biochem J 178: 493–496.PubMedGoogle Scholar
  27. Kirk CJ, Michell RH and Hems DA (1981) Biochem J 194: 155–165.PubMedGoogle Scholar
  28. Kirk CJ, Guillon G, Balestre M-N, Creba JA, Michell RH and Jard S (1985) Biochimic 67: 1161–1167.CrossRefGoogle Scholar
  29. Lapetina EG, Brown WE and Michell RH (1976) J Neurochem 26: 649–651.PubMedCrossRefGoogle Scholar
  30. Larrabee MG (1968) J Neurochem 26: 649–651.Google Scholar
  31. Larrabee MG and Leicht WS (1965) J Neurochem 12: 1–13.PubMedCrossRefGoogle Scholar
  32. Larrabee MG, Klingman JD and Leicht WS (1963) J Neurochem 10: 549–560.PubMedCrossRefGoogle Scholar
  33. Lim ATW, Lolait SJ, Barlow JW, Autelitano DJ, Toh BH, Boublik J, Abraham J, Johnston CI and Funder JW (1984) Nature 310: 61–64.PubMedCrossRefGoogle Scholar
  34. MacIntyre E (1985) Mechanisms of Stimulus-Response Coupling in Platelets. Plenum, in press.Google Scholar
  35. Michell RH (1975) Biochim Biophys Acta 415: 81–147.PubMedCrossRefGoogle Scholar
  36. Michell RH (1979) Trends Biochem Sci 4: 128–131.CrossRefGoogle Scholar
  37. Michell RH (1981) Neurosci Res Prog Bull 20: 338–350.Google Scholar
  38. Michell RH (ed) (1982a) Inositol Phospholipids and Cell Calcium, special issue of Cell Calcium 3: 285–502.Google Scholar
  39. Michell RH (1982b) In: Horrocks LA, Ansell GB and Porcellati G (eds): Phospholipids in the Nervous System, Vol 1. Raven Press, New York, pp. 315–325.Google Scholar
  40. Michell RH (1986) In: Mechanisms of Receptor Regulation. Plenum Press, pp. 75-94.Google Scholar
  41. Michell RH, Jafferji SS and Jones LM (1977) In: Bazan NG, Brenner RR and Giusto NM (eds): Function and Biosynthesis of Lipids. Plenum Press, New York, pp. 447–464.CrossRefGoogle Scholar
  42. Michell RH, Kirk CJ and Billah MM (1979) Biochem Soc Trans 7: 861–865.PubMedGoogle Scholar
  43. Michell RH, Kirk CJ, Jones LM, Downes CP and Creba JA (1981) Phil Trans Roy Soc Ser B 296: 123–137.CrossRefGoogle Scholar
  44. Michell RH, Hawkins PT, Palmer S and Kirk CJ (1984) In: Endo M (ed): Calcium Regulation in Biological Systems. Takeda Science Foundation, Tokyo, pp. 85-103.Google Scholar
  45. Monaco ME (1982) J Biol Chem 157: 2173–2179.Google Scholar
  46. Monaco ME and Woods D (1983) J Biol Chem 258: 15125–15129.PubMedGoogle Scholar
  47. Nagata Y, Mikoshiba K and Tsukada Y (1973) Brain Res 56: 259–269.PubMedCrossRefGoogle Scholar
  48. Nishizuka Y (1984) Nature 308: 693–698.PubMedCrossRefGoogle Scholar
  49. Nussey SS, Ang VTY, Jenkins JS, Chowdrey HS and Bisset GW (1984) Nature 310: 64–66.PubMedCrossRefGoogle Scholar
  50. Peters S and Kreulen L (1984) Fed Proc 43: 96.Google Scholar
  51. Pickard MR, Hawthorne JN, Hayashi E and Yamada S (1977) Biochem Pharmacol 26: 448–450.PubMedCrossRefGoogle Scholar
  52. Schmale H and Richter D (1984) Nature 308: 705–709.PubMedCrossRefGoogle Scholar
  53. Seyfred MA, Farell LE and Wells WW (1984) J Biol Chem 259: 13204–13208.PubMedGoogle Scholar
  54. Stephens LR and Logan SD (1985) J Neurochem, submitted.Google Scholar
  55. Storey DJ, Shears SB, Kirk CJ and Michell RH (1984) Nature 312: 374–376.PubMedCrossRefGoogle Scholar
  56. Takhar APS and Kirk CJ (1981) Biochem J 194: 164–172.Google Scholar
  57. Thomas AP, Marks JS, Coll KE and Williamson JR (1983) J Biol Chem 258: 5716–5725.PubMedGoogle Scholar
  58. Troyer DA, Kreisberg JI, Schwertz DW and Venkatachalem MA (1983) Fed Proc 42: 1259.Google Scholar
  59. Wali FA (1984) Pharmacol Res Commun 16: 55–62.PubMedGoogle Scholar
  60. Yano K, Higashida H, Inoue R and Nozawa Y (1984) J Biol Chem 259: 10201–10207.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Robert H. Michell
    • 1
  • Elisabeth A. Bone
    • 1
  1. 1.Department of BiochemistryUniversity of BirminghamBirminghamUK

Personalised recommendations