Water and DNA-Drug Interaction

  • Günter Löber
  • Renate Klarner

Abstract

Several biologically active compounds are capable of forming intermolecular non-covalent complexes with deoxyribonucleic acid (DNA) under free energy changes of less than 40 kJ/mol (approximately 10 kcal/mol)[1–4]. These complexes are in the first place investigated on isolated DNA. There is, however, indication that they are also present in biological systems, where the nucleic acids exist in their natural state[5,6].

Keywords

Glycerol Fluor Isopropanol Eosin Ethidium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Blake and A. R. Peacocke, The interactions of aminoacridines with nucleic acids, Biopolymers 6: 1225 (1968).PubMedCrossRefGoogle Scholar
  2. 2.
    G. Löber, On the complex formation of acridine dyes with DNA- IV. The equilibrium constants of substituted proflavine and acridine orange derivatives, Photochem.Photobiol. 8: 23 (1968).CrossRefGoogle Scholar
  3. 3.
    G. Löber and G. Achtert, On the complex formation of acridine dyes with DNA-VII. Dependence of the binding on the dye structure, Biopolymers 8: 595 (1969).Google Scholar
  4. 4.
    G. Löber, Zur Komplexbindung von Farbstoffen mit Desoxyribonucleinsäuren, Z.Chem. 9: 252 (1969).CrossRefGoogle Scholar
  5. 5.
    G. Löber, W. Fleck, H.-E. Jacob, and K. Rost, Beziehungen zwischen der Komplexbindung mit DNS und einigen biologischen Wirkungen von Acridinfarbstoffen, in Wirkungsmechanismen von Fungiziden, Antibiotika und Cytostatika, H. Lyr and W. Rawald, eds., Akademie-Verlag, Berlin (1970) p. 39.Google Scholar
  6. 6.
    G. Löber, Acridine - ihre physikochemische und biochemische Bedeutung. Eine Betrachtung anläßlich der Entdeckung des Acridins vor 100 Jahren. Teil II. Z.Chem. 11: 135 (1971).CrossRefGoogle Scholar
  7. 7.
    G. Löber, and L. Kittler, Selected topics in photochemistry of nucleic acids, Recent results and perspectives, Photochem.Photobiol. 25: 215 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    G. Löber, The fluorescence of dye-nucleic acid complexes. J.Luminescence 22: 221 (1981).CrossRefGoogle Scholar
  9. 9.
    Z. Balcarovä, V. Kleinwächter, J. Koudelka, G. Löber, K. E. Reinert, L. P. G. Wakelin, and M. J. Waring, Interaction of phenosafranine with nucleic acids and model polyphosphates. II. Characterization of phenosafranine binding to DNA. Biophys.Chem. 8: 27 (1978).Google Scholar
  10. 10.
    G. Löber, L. Kittler, R. Klarner, Z. Hradecna, V. Kleinwächter, Z. Balcarovâ, M. Skalka, J. Koudelka, E. Smdkal, L. Popa and V. Beensen, DNA-drug interactions (A minireview). Studia biophysica 88: 1 (1982).Google Scholar
  11. 11.
    G. Löber, H. Schütz, and V. Kleinwächter, Effect of organic solvents on the properties of the complexes of DNA with proflavine and similar compounds. Biopolymers 11: 2439 (1972).PubMedCrossRefGoogle Scholar
  12. 12.
    T. T. Herskovits, Nonaqueous solution of DNA: factors determining the stability of the helical configuration in solution. Arch.biochem.Biophys. 97: 474 (1962).CrossRefGoogle Scholar
  13. V. Kleinwchter and J. Koudelka, Thermal denaturation of deoxyribonucleic acid acridine orange complex. Biochim. Biophys.Acta 91:539 (1964).Google Scholar
  14. 14.
    G. Löber, R. Klarner, E. Smékal, T. Räim, Z. Balcarovâ, J. Koudelka, and V. Kleinwächter, Spectroscopic investigations on the interaction of the anthracycline antibiotic violamycin BI with deoxyribonucleic acid, Int.J.Biochem. 15: 663–673 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    U. Katenkamp, E. Stutter, I. Petri, F. A. Gollmick, and H. Berg, Interaction of authracyline antibiotics with biopolymers. VIII. Binding parameters of aclacinomycin A to DNA. J.Antibiotics 36: 1222–1227 (1983).CrossRefGoogle Scholar
  16. 16.
    G. Löber, V. Kleinwächter, J. Koudelka, and E. Smékal, On spectral properties of type I complexes of dyes with deoxyribonucleic acid and human serum albumin. Studia biophysica 45: 91 (1974).Google Scholar
  17. 17.
    H. Lang and G. Löber, Die Lösungsmittelabhängigkeit der Elektronenspektren von kationischen Acridinfarbstoffen, Ber.Bunsenges.physik.Chem. 73: 710 (1969).Google Scholar
  18. 18.
    G. Löber, and V. Kleinwächter, Effect of organic solvents on the properties of the complex polyphosphate-acridine orange (preliminary note), Studia biophysica 33: 73 (1972).Google Scholar
  19. 19.
    G. Löber, V. Kleinwächter, and H. Berg, Effect of organic solvents on the properties of the complexes of a polyphosphate with acridines, Studia biophysica 35: 29 (1973).Google Scholar
  20. 20.
    G. Löber, V. Kleinwächter, and J. Koudelka, Staining of chromosomes with basic dyes, Studia biophysica 55: 49 (1976).Google Scholar
  21. 21.
    G. Löber, V. Kleinwächter, J. Koudelka, Z. Balcarovâ, J. Filkuka, P. Krejci, P. Döbel, V. Beensen, and R. Rieger, Molecular and spectroscopic aspects of chromosome banding, Biol.Zbl. 95: 169 (1976).Google Scholar
  22. 22.
    G. Löber, V. Beensen, Ch. Zimmer, and H. Hanschmann, Changes of quinacrine staining of human chromosomes by the competitive binding of A.T and G.C-specific substances, Studia biophysica 69: 237 (1978).Google Scholar
  23. 23.
    G. Löber, On the spectroscopic basis of acridine-induced fluorescence banding patterns in chromosomes. Studia bio physica 48: 109 (1975).Google Scholar
  24. 24.
    C. J. Seliskar and L. Brand, Electronic spectra of 1 aminonaphthalene-6-sulfonate and related molecules, J.Am. Chem.Soc. 93: 5414 (1971).CrossRefGoogle Scholar
  25. 25.
    R. D. G. McKay, The mechanism of G- and C-banding in mammalian metaphase chromosomes. Chromosome (Berlin) 44: 1 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Günter Löber
    • 1
  • Renate Klarner
    • 1
  1. 1.Acad. of Sci. of the GDR, Department of Drugs and IsotopesCentral Institute of Microbiology and Experimental TherapyJenaGermany

Personalised recommendations