Skip to main content

Basalt — Seawater Exchange: A Perspective from an Experimental Viewpoint

  • Chapter
Hydrothermal Processes at Seafloor Spreading Centers

Part of the book series: NATO Conference Series ((MARS,volume 12))

Abstract

The hydrothermal circulation of seawater through the ocean crust near spreading centers is not only responsible for dissipating about 30% of the heat generated by the emplacement of new crustal material (Sclater et al., 1981), but also for substantial chemical exchanges between the crust and the ocean. It has even been suggested that basalt-seawater interactions “buffer” the composition of the ocean with respect to certain elements. Submarine hot springs appear to discharge into the ocean quantities of manganese, rubidium and lithium equivalent to three, seven, and ten times the river fluxes of these three elements (see Table 1; also G. Thompson, this volume). Hydrothermal inputs in calcium and silica amount to 1/3 and 1/2, respectively, of the river fluxes whereas those in barium and potassium are of about the same order of magnitude as the river fluxes (see Table 1). On the other hand, quantities of magnesium of about the same order of magnitude as the river input seem to be taken up by the altered crust. The actual amounts of most of the various elements remobilized from crustal rocks by hydrothermal circulation are probably higher than those measured in the hot springs debouching on the sea floor because substantial quantities are left behind in the crust when secondary minerals precipitate in the cracks to form veins and cement of breccias. This is particularly true for calcium and silica which form the abundant veins of calcite, quartz, prehnite and various zeolites found in dredged and cored samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albarede, F., A. Michard, J.F. Minster and G. Michard. 1981. 87Sr/86Sr ratios in hydrothermal waters and deposits from the East Pacific Rise at 21°N. Earth Planet. Sci. Lett. 55: 229–236.

    Article  CAS  Google Scholar 

  • Alt, J.C., J. Honnorez, H. Hubberten and E. Saltzman. In press. Occurrence and origin of anhydrite from DSDP Leg 70, Hole 504 B, Costa Rica Rift. DSDP Vol.: 69–70.

    Google Scholar 

  • Anderson, R.N., J. Honnorez, K. Becker, A.C. Adamson, J.C. Alt, R. Emmermann, P.D. Kempton, H. Kinoshita, C. Laverne, M.J. Mottl and R.L. Newmark. 1982. DSDP Hole 504B, the first reference section over 1 km through Layer 2 of the oceanic crust. Nature 300: 589–594.

    Article  Google Scholar 

  • Bischoff, J.L. and F.W. Dickson. 1975. Seawater-basalt interaction at 200°C and 500 bars: implications for origin of sea-floor heavy-metal deposits and regulation of sea-water chemistry. Earth Planet. Sci. Lett. 25: 385–397.

    Article  CAS  Google Scholar 

  • Bischoff, J.L. and W.E. Seyfried. 1978. Hydrothermal chemistry of seawater from 25° to 350°C. Am. Jour. Sci. 278: 838–860.

    Article  CAS  Google Scholar 

  • Bonatti, E. and O. Joensuu. 1966. Deep-sea iron deposits from the South Pacific. Science 154: 385–402.

    Article  Google Scholar 

  • Bonatti, E., B.M. Honnorez-Guerstein and J. Honnorez. 1976. Copper iron sulfide mineralizatons from the equatorial Mid-Atlantic Ridge. Economic Geology 71: 1515–1525.

    Article  CAS  Google Scholar 

  • Boström, K. 1973. The origin and fate of ferromanganoan active ridge sediments. Acta Univ. Stockholm, Stockholm Contr. Geol. 27: 149–243.

    Google Scholar 

  • Boström, K. and M.N.A. Peterson. 1966. Precipitates from hydrothermal exhalations on the East Pacific Rise. Econ. Geol. 61: 1258–1265.

    Article  Google Scholar 

  • Craig, H., J.A. Welhan, K. Kim, R. Poreda and J.E. Lupton. 1980. Geochemical studies at 21°N EPR hydrothermal fluids, Abscract. EOS 61: 992.

    Google Scholar 

  • Delaney, J.R., D.W. Mogk and M.J. Mottl. Quartz-cemented, sulfide-bearing greenstone breccias from the Mid-Atlantic Ridge—samples of a high-temperature hydrothermal upflow zone. Subm. to Science.

    Google Scholar 

  • Edmond, J.M. 1980. The chemistry of the 350° hot springs at 21°N on the East Pacific Rise, Abstract. EOS, 61: 992.

    Google Scholar 

  • Edmond, J.M., C. Measures, R.E. McDuff, L.J. Chan, R. Collier, B. Grant, L.I. Gordon and J.B. Corliss. 1979. Ridge Crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett. 46: 1–18.

    Article  CAS  Google Scholar 

  • Ellis, A.J. 1967. The chemistry of some explored geothermal systems, pp. 465–514. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits. Holt, Rinehart and Winston, Inc., N.Y.

    Google Scholar 

  • Ellis, A.J. 1970. Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics, Sept. Issue 2: 516–528.

    Article  Google Scholar 

  • Hajash, A. 1975. Hydrothermal processes along Mid-Ocean Ridges: an experimental investigation. Contrib. Mineral. Petrol. 53: 205–226.

    Article  CAS  Google Scholar 

  • Hajash, A. and G.W. Chandler. 1981. An experimental investigation of high-temperature interactions between seawater and rhyolite, andesite, basalt and peridotite. Contr. Mineral. Petrol. 78: 240–254.

    Article  CAS  Google Scholar 

  • Haymon, R., and M. Kastner., 1981. Hot spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis. Earth Planet. Sci. Lett., 53: 363–381.

    Article  CAS  Google Scholar 

  • Honnorez-Guerstein, B.M., J. Alt, J. Honnorez and D. Laverne. In press. Zn, Cu, Pb, Fe-sulfide mineralizations in DSDP Hole 504 B: a buried equivalent of the black smokers? DSDP Vol. 83.

    Google Scholar 

  • Jehl, V. 1975. Le metamorphisme et les fluides associés des roches océaniques de l’Atlantique nord. Ph.D. Thesis, Université de Nancy I, 242 pp.

    Google Scholar 

  • Le Bel, L. and E. Oudin. 1982. Fluid inclusion studies of deep-sea hydrothermal sulphide deposits on the East Pacific Rise near 21°N. Chem. Geol., 37: 129–136.

    Article  Google Scholar 

  • Lyle, M. 1976. Estimation of hydrothermal manganese input to the oceans. Geology, 4: 733–736.

    Article  CAS  Google Scholar 

  • McDuff, R.E. and J.M. Edmond. 1982. On the fate of sulfate during hydrothermal circulation at mid-ocean ridges. Earth and Planet. Sci. Lett. 57: 117–132.

    Article  CAS  Google Scholar 

  • Miyashiro, A. 1973. Metamorphism and metamorphic belts, p. 432. John Wiley and Sons, New York.

    Book  Google Scholar 

  • Mottl, M.J. 1976. Chemical exchange between seawater and basalt during hydrothermal alteration of the oceanic crust. 107. pp. Ph.D. Thesis, Harvard Univ., Cambridge, Mass.

    Google Scholar 

  • Mottl, M.J. and H.D. Holland. 1978. Chemical exchange during hydrothermal alteration of basalt by seawater - 1. Geochim. Cosmochim. Acta, 42: 1103–1115.

    Article  CAS  Google Scholar 

  • Mottl, M.J. and W.E. Seyfried. 1980. Sub-seafloor hydrothermal systems, rock–vs. seawater-dominated. In Rona, P.A. and R.P. Lowell, Eds., Seafloor Spreading Centers: Hydrothermal Systems. Dowden, Hutchinson amp; Ross Inc., Stroudsburg, Pa., 66–82.

    Google Scholar 

  • Muehlenbachs, K.and R.N. Clayton. 1972. Oxygen isotope studies of fresh and weathered submarine basalts. Can. Jour. Earth Sci., 9: 172–184.

    Article  CAS  Google Scholar 

  • Ohmoto, H. and R.O. Rye. 1974. Hydrogen and oxygen isotopic compositions of fluid inclusions in the Kuroko deposits, Japan. Econ. Geol., 69: 947–953.

    Article  CAS  Google Scholar 

  • Oudin, E., C. Fouillac, and L. Le Bel. 1981. Etudes Minéralogique et géochimique des dépôts sulfurés sous-marins actuels de la ride Est-Pacifique (21°N). Campagne Rise. BRGM Publ. No. 25: 241 pp.

    Google Scholar 

  • Picot, P. and M. Février. 1980. Etude minéralogique d’échantillons du Golfe de Californie (campagne CYAMEX). BRGM Publ. No. 20: 50 pp.

    Google Scholar 

  • Sclater, J.G., B. Parsons and O. Jaupart. 1981. Oceans and continents: similiarities and differences in the mechanisms of heat loss. Jour. Geophys. Res., 86: 11535–11552.

    Article  Google Scholar 

  • Seyfried, W.E. Jr. 1977. Seawater-basalt interaction from 25° - 300°C and 1–500 bars: implications for the origin of submarine metal-bearing hydrothermal solutions and regulation of ocean chemistry. Ph.D. Thesis, Univ. Southerm California, Los Angeles, 216 pp.

    Google Scholar 

  • Seyfried, W.E. Jr. and M.J. Mottl. 1977. Origin of submarine metal-rich hydrothermal solutions: experimental basalt-seawater interaction in a seawater-dominated system at 300°C, 500 bars, 173–180. In Pacquet, H., and Y. Tardy, eds., Proc. Second Internat. Symp. on Water rock Interaction, Strasbourg, France.

    Google Scholar 

  • Seyfried, W.E. Jr. and M.J. Mottl. 1982. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Geochem. Cosmochem. Acta., 46: 985–1002.

    Article  CAS  Google Scholar 

  • Seyfried, W. E. Jr., M. J. Mottl and J. L. Bischoff. 1978. Seawater/basalt ratio effects on the chemistry and mineralogy of spilites from the ocean floor. Nature, 275: 211–213.

    Article  CAS  Google Scholar 

  • Skornyakova I.S., 1964. Dispersed iron and manganese in Pacific Ocean sediments. Int. Geol. Rev., 7 (12): 2161–2174.

    Article  Google Scholar 

  • Spooner, E.T.C., H.J. Chapman and J.D. Smewing. 1977. Strontium isotopic contamination and oxidation during ocean floor hydrothermal metamorphism of the ophiolitic rocks of the Troodos massif, Cyprus. Geochem. Cosmochim. Acta, 41: 891–912.

    Article  Google Scholar 

  • Stakes, D.S. and J.R. O’Neil. 1982. Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks. Earth and Planet. Sci. Lett. 57: 285–304.

    Article  CAS  Google Scholar 

  • Styrt, M.M., A.J. Brackmann, H.D. Holland, B.C. Clark, U. PisuthaArnond, C.S. Elridge and H. Ohmoto. 1981. The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the Fast Pacific Rise, 21°N latitude. Earth and Planet. Sci. Lett. 53: 382–390.

    Article  CAS  Google Scholar 

  • Vidal, P., and N. Clauer. 1981. Pb and Sr isotopic systematics of some basalts and sulfides from the East Pacific Rise at 21°N (project Rita). Earth and Planet. Sci. Lett. 55: 237–246.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Honnorez, J. (1983). Basalt — Seawater Exchange: A Perspective from an Experimental Viewpoint. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (eds) Hydrothermal Processes at Seafloor Spreading Centers. NATO Conference Series, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0402-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0402-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0404-1

  • Online ISBN: 978-1-4899-0402-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics