Skip to main content

Geophysical Constraints on the Volume of Hydrothermal Flow at Ridge Axes

  • Chapter
Hydrothermal Processes at Seafloor Spreading Centers

Part of the book series: NATO Conference Series ((MARS,volume 12))

Abstract

Hydrothermal circulation at the ridge axis removes heat from the oceanic crust more rapidly than would conduction alone. The top of the axial magma chamber is thus deeper and possibly wider than the theoretical shape computed from conductive thermal models. At 9°N on the East Pacific Rise seismic reflection indicates that the roof of the magma chamber is relatively flat, 2 km deep, and extends 4 km from the axis. This is about a kilometer deeper than predicted by a purely conductive model.

We believe that the magma chamber is mostly filled with mush at ridges with both fast and slow spreading rates. At fast rates the mush is formed by crystallization at the top of a magma chamber that is wide and flat topped. At slow rates a narrow magma chamber is probably an anastomosing complex of partially molten dikes and associated cumulate layers. Thermal modeling indicates that the hydrothermal heat flux is between 0.7×108 and 1.5×108 cal/cm2, or less than 1/10 of the total missing heat flux (the difference between obsereved and theoretical heat flow) at the ridge axis. By using the observation that Mg is totally depleted from exiting axial fluids, we find that the minimum amount of crust which reacts with axial hydrothermal flow is equivalent to a 80 m thick section of crust. A minimum thickness of 200 m is obtained from K which is leached from the basalt into the hydrothermal fluid. These estimates indicate that there is no requirement that the bulk of the oceanic crust react strongly with the axial hydrothermal fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. N., and Hobart, M. A., 1976, The relation between heat flow, sediment thickness and age in the Eastern Pacific, J. Geophys. Res., 81: 2968–2989.

    Article  Google Scholar 

  • Anderson, R. N., Langseth, M. G., and Sclater, J. G., 1977, The mechanism of heat transfer through the floor of the Indian Ocean, J Geophys. Res., 82: 3391–3409.

    Article  Google Scholar 

  • Bibbee, L. D., Dorman, L. M., Johnson, S. H., and Orcutt, J. A., 1983, Crustal. structure of the East Pacific Rise at 10°S, J. Geophys. Res., 87 (in press), (unseen).

    Google Scholar 

  • Cann, J. R., 1974, A model for oceanic crustal structure developed, Geophys. J. R. astron. Soc., 3.9 169–187.

    Google Scholar 

  • Casey, J. F., Dewey, J. F., Fox, P. J., and Karson, J. A., 1981, Heterogeneous nature of oceanic crust and upper mantle: A perspective from the Bay of Islans ophiolite complex, in: “The Oceanic Lithosphere, The Sea, Vol. 7,” C. Emiliani, ed., John Wiley, New York, 305–338.

    Google Scholar 

  • Converse, D. R, Holland, H. D., and Edmond, J. M., 1982, Hydrothermal flow rates at 21°N, EOS, Trans. Amer. Geophys. Union, 63: abstract V551–4, 472.

    Google Scholar 

  • Dewey, J. F., and Kidd, W. S. F., 1977, Geometry of plate accretion, Geol. Soc. Amer. Buell., 88: 960–968.

    Article  Google Scholar 

  • Dreyer, J. I., 1974, The magnesium problem, in: “Marine Chemistry, The Sea, Vol. 5,” E. D. Goldberg, ed., Wiley-Interscience, New York, 337–357.

    Google Scholar 

  • Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Collier, R., Grant, B., Gordon, L. I., and Corliss, J. B., 1979, Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data, Earth Planet. Sci. Lett., 46. 1–18.

    Article  CAS  Google Scholar 

  • Elthon, D., Casey, J., and Komor, S., 1982, Mineral chemistry of ultramafic cumulates from the North Arm Mountain massif of the Bay of Islands ophiolite: evidence for high-pressure crystal fractionation of oceanic basalts, J. Geophys. Res., 87: 8717–8734.

    Article  CAS  Google Scholar 

  • Fox, P. J., and Stroup, J. B., 1981, Geological and geophysical properties of the lower oceanic crust, in: “The Oceanic Lithosphere, The Sea, Vol. 7,” C. Emiliani, ed., John Wiley, New York, 119–216.

    Google Scholar 

  • Gregory, R. T., and Taylor, H. P., 1981, An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: Evidence for d1130 buffering of the oceans by deep (5 km) seawater-hydrothermal circulation at mid-ocean ridges, J. Geophys. Res., 86: 2737–2755.

    Article  CAS  Google Scholar 

  • Hale, L. D., Morton, C. J., and Sleep, N. H., 1982, Reinterpretation of seismic reflection data over the East Pacific Rise, J. Geophys. Res„ 87: 7707–7718.

    Article  Google Scholar 

  • Hart, R. A., 1973, A model for chemical exchange in the basalt-sea water system of oceanic layer II, Can. J. Earth Sci., 10: 801–816.

    Google Scholar 

  • Herron, T. J., Ludwig, W. J., Stoffa, P. L., Kan, T. K., and Buhl, P., 1978, Structure of the East Paccific Rise crest from multichannel seismic data, J. Geophys. Res., 83: 798–804.

    Article  Google Scholar 

  • Hess, H. H., 1965, Mid-oceanic ridges and the tectonics of the sea-floor, in: “Submarine Geology and Geophysics,” W. F. Whittard and R. Bradshaw, eds., Butterworths, London, 317–333.

    Google Scholar 

  • Lewis, B. T. R., 1981, Isostasy, Magma chambers, and plate driving forces on the East Pacific Rise, J. Geophys. Res., 86: 4868–4880.

    Article  Google Scholar 

  • Lewis, B. T. R., 1982, Constraints on the structure of the East Pacific Rise from gravity, J. Geophys. Res., 87: 8491–8500.

    Article  Google Scholar 

  • Macdonald, K. C., 1982, Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone, Ann. Rev. Earth Planet Sci., 10: 155–190.

    Google Scholar 

  • Macdonald, K. C., Becker, K., Spiess, F. N., and Ballard, R. D., 1980, Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise, Earth Planet. Sci. Lett., 48: 1–7.

    Google Scholar 

  • Matti, M. J., 1976, Chemical exchange between sea water and basalt during hydrothermal alteration of the oceanic crust, Ph. D. thesis, Harvard University, Cambridge, Mass.

    Google Scholar 

  • Oldenburg, D. W., 1975, A physical model for creation of the lithosphere, Geophys. J R. astron. Soc., 43: 425–451.

    Article  Google Scholar 

  • Orcutt, J. A., Kennett, B. L. M., and Dorman, L. M., 1976, Structure of the East Pacific Rise from an ocean bottom seismometer survey, Geophys. J. R. astron. Soc., 45: 305–320.

    Article  Google Scholar 

  • Pallister, J. S., and Hopson, C. A., 1981, Samail ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber, J. Geophys. Res., 86: 2593–2644.

    Article  CAS  Google Scholar 

  • Parker, R. L., and Oldenburg, D. W., 1973, Thermal model of ocean ridges, Nature, 242. 137–139.

    Article  Google Scholar 

  • Rosendahl, B. R., 1976, Evolution of oceanic crust 2.. Constraints, implications, and inferences, J. Geophys. Res., 81: 5305–5313.

    Article  CAS  Google Scholar 

  • Rosendahl, B. R., Raitt, R. W., Dorman, L. M., Bibbee, L. O., Hussong, D. M., and Sutton, G. H., 1976, Evolution of oceanic crust, 1, A physical model of the East Pacific Rise crest derived from seismic refraction data, J Geophys. Res., 81: 5294–5305.

    Article  Google Scholar 

  • Sclater, J. G., and Francheteau, J., 1970, The implications of terrestrial heat flow observations on current tectonic and geothermal models of the crust and upper mantle of the earth, Geophys. J. R. astron. Soc., 2a 509–542.

    Google Scholar 

  • Sclater, J. G., Jaupart, C., and Galson, D., 1980, The heat flow through oceanic and continental crust and the heat loss of the earth, Rev. Geophys. Space Phys., 18: 269–312.

    Article  Google Scholar 

  • Sleep, N. H., 1974, Segregation of magma from a mostly crystalline mush, Geol. Soc. Amer. Bull., 85: 1225–1232.

    Article  Google Scholar 

  • Sleep, N. H., 1975, Formation of the oceanic crust: some thermal constraints, J. Geophys. Res., 80: 4037–4042.

    Article  Google Scholar 

  • Sleep, N. H., 1978, Thermal structure of mid-oceanic ridge axes, soine implications to basaltic volcanism, Geophys. Res. Lett., 5: 426–428.

    Article  Google Scholar 

  • Sleep, N. H., and Rosendahl, B. R., 1979, Topography and tectonics of midocean ridge axes, J. Geophys. Res., 75: 6831–6839.

    Article  Google Scholar 

  • Sleep, N. H., and Wolery, T. J., 1978, Thermal and chemical constraints on venting of hydrothermal fluids at mid-ocean ridges, J. Geophys. Res., 83: 5913–5922.

    Article  Google Scholar 

  • Wolery, T. J., 1978, Some chemical aspects of hydrothermal processes at mid-oceanic ridges - A theoretical study. I. Basalt-sea water reaction and chemical cycling between the oceanic crust and the oceans. II. Calculation of chemical equilibrium between aqueous solutions and minerals. Ph. D. thesis, Northwestern University, Evanston, Ill., 263 pp.

    Google Scholar 

  • Wolery, T. J., and Sleep, N. H., 1976, Hydrothermal circulation and geochemical flux at mid-ocean ridges, J. Geol., 84: 249–275.

    Article  CAS  Google Scholar 

  • Wolery, T. J., and Sleep, N. H., 1983, Interactions between ex:ogenic cycles and the mantle, in, “Chemical Cycles and the Evolution of the Earth,” R. M. Garrels, C. B. Gregor, and F. T. Mackenzie, eds., (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sleep, N.H., Morton, J.L., Burns, L.E., Wolery, T.J. (1983). Geophysical Constraints on the Volume of Hydrothermal Flow at Ridge Axes. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (eds) Hydrothermal Processes at Seafloor Spreading Centers. NATO Conference Series, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0402-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0402-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0404-1

  • Online ISBN: 978-1-4899-0402-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics