Skip to main content

Part of the book series: NATO Conference Series ((MARS,volume 12))

Abstract

The upper part of the igneous oceanic basement consists of basaltic lava. This basalt undergoes reaction with seawater over a range of temperatures, time and locale. This reaction is a major source and sink for various ions in seawater, and is a major process in buffering seawater composition and forming metalliferous ores in the marine environment.

The nature of the chemical reaction and the fluxes of ions exchanged between the oceans and the igneous basement are mostly dependent on the temperature of reaction and the relative proportion of the reactants. These vary in respect to the location of the water circulation and distance from the heat source. Four examples of seawater-basalt interactions are considered and the net exchange fluxes are calculated; these examples cover the range of temperature and water:rock ratios typically found in the ocean floor.

Low temperature, high water:rock ratio is typical of the exchange in the upper few meters of the oceanic basement. Only about 0.1% of new oceanic crust undergoes this reaction which extends over a time period of tens of millions of years. The annual fluxes produced are not very large. Low temperature, low water:rock ratio is typical of the reaction in the deeper parts of the oceanic basement. About 8% of newly formed oceanic crust can be expected to undergo this reaction over a period of a few million years. Reactions and fluxes on the flanks of spreading centers are at moderate temperatures and water:rock ratios. These reactions are relatively short lived, but the fluxes produced are quite high. High temperature reaction of seawater and basalt (in excess of 100°C) takes place at spreading centre axes. These reactions are fast but result in very high fluxes and formation of polymetallic sulfides or iron and manganese oxides. The products of this reaction and the direction of exchange for some ionic species are quite different compared to the lower temperature reactions.

The net effect of the basalt-seawater exchange is the sum of all the reacton fluxes over the full temperature range. This calculated net flux indicates that the basalt is a source for ions such as Si, Ca, Ba, Li, Fe, Mn, Cu, Ni, Zn and hydrogen ions. It also is the sink for ions such as Mg, K, B, Rb, H2O, Cs and U. The annual fluxes calculated for some of these species is of the same order of magnitude as the annual river influxes into the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. N., M. A. Hobart, and M. G. Langseth, 1979: Geothermal convection through oceanic crust and sediments in the Indian Ocean. Science 204, 828–832.

    CAS  Google Scholar 

  • Andrews, A. J., 1977: Low temperature fluid alteration of oceanic layer 2 basalts, DSDP Leg 37. Can. J. Earth Sci. 14, 911–926.

    Google Scholar 

  • Andrews, A. J., 1978: Petrology and geochemistry of alteration in layer 2 basalts, DSDP Leg 37. Ph. D. Thesis, Univ. of Western Ontario, London, Canada. 327 pp.

    Google Scholar 

  • Aumento, F., and B. Loncarevic, 1969: The Mid-Atlantic Ridge near 45°N. III. Bald Mountain. Can. J. Earth Sci. 6, 11–23.

    Google Scholar 

  • Aumento, F., B. Loncarevic, and D. I. Ross, 1971: Hudson geotraverse: Geology of the mid-Atlantic ridge at 45°N. Phil. Trans. Roy. Soc. London A 268, 623–650.

    Google Scholar 

  • Baragar, W. R. A., A. G. Plant, G. J. Pringle, and M. Schau, 1979: Diagenetic and postdiagenetic changes in the composition of an Archean pillow. Can. J. Earth Sci. 16 (II), 2102–2121.

    Google Scholar 

  • Bass, M. N., R. Moberly, J. M. Rhodes, C. Y. Shih, and S. E. Church, 1973: Volcanic rocks cored in the central Pacific, Leg 17, Deep Sea Drilling Project. In: Initial Reports of Deep Sea Drilling Project 17, 429–503. U. S. Gov’t. Printing Office.

    Google Scholar 

  • Bass, M. N., 1975: Secondary minerals in oceanic basalts. In: Ann. Rept. Dept. Terr. Magnetism-Carnegie Inst. Year Book 74, 234–240.

    Google Scholar 

  • Bass, M. N., 1976: Secondary minerals in oceanic basalt, with special reference to Leg 34, Deep Sea Drilling Project. In: Initial Reports of Deep Sea Drilling Project 34, 393–432. U. S. Gov’t. Printing Office.

    Google Scholar 

  • Bogdanov, Y. A. and V. Ploshko, 1968: Igneous and metamorphic rocks from the abyssal Comanche Depression. Dokl. Akad. Nauk SSSR 177. 173–176.

    Google Scholar 

  • Böhlke, J. K., J. Honnorez, and B. H. Honnorez-Guerstein, 1980: Alteration of basalts from site 396B, DSDP: Petrographic and mineralogic studies. Contrib. Mineral. Petrol. 73, 341–364.

    Google Scholar 

  • Bonatti, E., 1965: Palagonite, hyaloclastites and alteration of volcanic glass in the ocean. Bull. Volcanol. 28, 257–269.

    Google Scholar 

  • Bonatti, E., 1970: Deep sea volcanism. Naturwiss. 57, 379–384.

    CAS  Google Scholar 

  • Bonatti, E., J. Honnorez, and G. Ferrara, 1971: Peridotite-gabbro-basalt complex from the equatorial Mid-Atlantic Ridge. Phil. Trans. Roy. Soc. London A 268, 385–402.

    Google Scholar 

  • Bonatti, E., J. Honnorez, P. Kirst, and F. Radicati, 1975: Metagabbros from the Mid-Atlantic Ridge at 6°N: contact-hydrothermal-dynamic metamorphism beneath the axial valley. J. Geol. 83, 61–78.

    Google Scholar 

  • Broecker, W. S., 1971: A kinetic model for the chemical composition of sea-water. Quat. Res. 1, 188–207.

    Google Scholar 

  • Byerly, G. R. and J. M. Sinton, 1979: Compositional trends in natural basaltic glasses from Deep Sea Project Holes 417D and 418A. In: Initial Reports of the Deep Sea Drilling Project, 51–53 Part 2, 957–971. U. S. Gov’t. Printing Office.

    Google Scholar 

  • Cann, J. R., 1969: Spilites from the Carlsberg Ridge, Indian Ocean. J. Petrol. 10 (I), 1–19.

    Google Scholar 

  • Cann, J. R., 1971: Petrology of basement rocks from the Palmer Ridge, NE Atlantic. Phil. Trans. Roy. Soc. London A 268, 605–618.

    Article  CAS  Google Scholar 

  • Cann, J. R., 1979: Metamorphism in the ocean crust. In: Deep Drilling Results in the Atlantic Ocean: Ocean Crust, 230–238. Talwani, M., C. G. Harrison, and D. E. Hayes (Eds.) Amer. Geophys. Union, Maurice Ewing Series 2.

    Google Scholar 

  • Cann, J. R., 1980: Availability of sulfide ores in the oceanic crust. J. Geol. Soc. 137, 381–384.

    Google Scholar 

  • Cann, J. R., and B. Funnell, 1967: Palmer Ridge: a section through the upper part of the ocean crust. Nature 213, 661–664.

    Google Scholar 

  • Chapman, H. J., and E. T. C. Spooner, 1977: 87Sr enrichment of ophiolite sulphide deposits in Cyprus confirms ore formation by circulating seawater. Earth Planet. Sci. Letters 35, 71–78.

    Google Scholar 

  • Chernyseva, V. I., 1971: Greenstone altered rocks of rift zones in median ridges of Indian Ocean. Int. Geol. Rev., 13, 903–913.

    Google Scholar 

  • Corliss, J. B., 1971: The origin of metal-bearing submarine hydrothermal solutions. J. Geophys. Res., 76, 8128–8138.

    Google Scholar 

  • Corliss, J. B., L. I. Gordon, and J. M. Edmond, 1979: Some implications of heat/mass ratios in Galapagos rift hydrothermal fluids for models of seawater-rock interaction and the formation of oceanic crust. In: Deep Drilling Results in the Atlantic Ocean: Ocean Crust 391–402.

    Google Scholar 

  • Talwani, M., C. G. Harrison, and D. E. Hayes (Eds.). Amer. Geophys. Union, Maurice Ewing Series 2.

    Google Scholar 

  • Craig, H., W. G. Clarke, and M. A. Beg, 1975: Excess 3He in deep water on the East Pacific Rise. Earth Planet. Sci. Letters 26, 125–132.

    Google Scholar 

  • Craig, H., J. A. Welham, K. Kim, R. Poreda, and J. E. Lupton, 1980: Geochemical studies of 21°N EPR hydrothermal fluids. EOS, 61, 992.

    Google Scholar 

  • Deffeyes, K. S., 1970: The axial valley: a steady state feature of the terrain. In: Megatectonics of Continents and Oceans 194–222. Johnson, H., and B. L. Smith (Eds.) Rutgers Univ. Press.

    Google Scholar 

  • Delaney, J. R., D. W. Mogk, and M. J. Mottl, 1980: High temperature, sulfide bearing hydrothermal system on the mid-Atlantic ridge at 23.6°N. Geol.-Soc. Amer. Ann. Mtg., 12, 411 (Abstract).

    Google Scholar 

  • Delaney, J. R., D. W. Mogk, and M. J. Mottl, 1981: Quartz-cemented greenstone breccias - samples of high temperature hydrothermal fluid flow channels from the mid-Atlantic ridge. Abstr. Amer. Geophys. Union Chapman Conf., Airlie, VA.

    Google Scholar 

  • Donnelly, T. W., G. Thompson, and M. H. Salisbury, 1979a: The chemistry of altered basalts at site 417, Deep Sea Drilling Project Leg 51. In: Initial Reports of the Deep Sea Drilling Project 51–53, 1319–1330. U. S. Gov’t Printing Office.

    Google Scholar 

  • Donnelly, T. W., G. Thompson, and P. T. Robinson, 1979b: Very-low-temperature hydrothermal alteration of the oceanic crust and the problem of fluxes of potassium and magnesium. In: Deep Drilling Results in the Atlantic Ocean: Ocean Crust, 369–382. Talwani, M., C. G. Harrison, and D. E. Hayes (Eds.) Amer. Geophys. Union, Maurice Ewing Series 2.

    Google Scholar 

  • Donnelly, T. W., R. A. Pritchard, R. Emmerman, and H. Puchelt, 1979c: The aging of oceanic crust: synthesis of the mineralogical and chemical results of Deep Sea Drilling Project, Legs 51 through 53. In: Initial Reports of the Deep Sea Drilling Project 51–53, 1563–1577. U. S. Gov’t Printing Office.

    Google Scholar 

  • Dreyer, J. I., 1971: Early diagenesis of clay minerals, Rio Ameca Basin, Mexico. J. Sediment. Petrol. 41, 982–994.

    Google Scholar 

  • Dreyer, J. I., 1974: The magnesium problem. In: The Sea 5, 337–357, Goldberg, E. J., Ed. Wiley, N. Y.

    Google Scholar 

  • Edmond, J. M., 1980: Ridge crest hot springs: the story so far. EOS, 61 (2), 129–131.

    Article  Google Scholar 

  • Edmond, J. M., 1981: Hydrothermal activity at mid-ocean ridge axes. Nature 290 (5802), 87–88.

    Google Scholar 

  • Edmond, J. M., C. Measures, R. E. McDuff, L. H. Chan, R. Collier, B. Grant, L. I. Gordon, and J. B. Corliss, 1979a: Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet Sci. Letters 46, 1–18.

    Google Scholar 

  • Edmond, J. M., C. Measures, B. Mangum, B. Grant, F. R. Sciater, R. Collier, A. Hudson, L. I. Gordon, and J. B. Corliss, 1979b: On the formation of metal-rich deposits at ridge crests. Earth Planet. Sci. Letters 46, 19–30.

    Google Scholar 

  • Edmond, J. M., J. B. Corliss, and L. I. Gordon, 1979c: Ridge crest-hydrothermal metamorphism at the Galapagos spreading center and reverse weathering. In: Deep Drilling Results in the Atlantic Ocean: Ocean Crust 383–390. Talwani, M., C. G. Harrison, and D. E. Hayes, (Eds.) Amer. Geophys. Union, Maurice Ewing Series 2.

    Google Scholar 

  • Edmond, J. M., K. vonDamm, and R. E. McDuff, and C. I. Measures, 1981: Chemistry of hot springs on the East Pacific Rise and their effluent dispersal (a review). Nature 297 (5863), 187–191.

    Google Scholar 

  • Frey, F. A., W. B. Bryan, and G. Thompson, 1974: Atlantic Ocean floor: geochemistry and petrology of basalts from Legs 2 and 3 of the Deep Sea Drilling Project. J. Geophys. Res. 79, 5507–5527.

    Google Scholar 

  • Garlick, G. D., and J. R. Dymond, 1970: Oxygen isotope exchange between volcanic materials and ocean water. Geol. Soc. Amer. Bull., 81, 2137–2142.

    CAS  Google Scholar 

  • Garrels, R. M., and F. T. Mackenzie, 1971:. Evolution of Sedimentary Rocks Norton, N. Y. 394 p.

    Google Scholar 

  • Gibbs, R. J., 1972: Water chemistry of the Amazon River. Geochim. Cosmochim. Acta 36, 1061–1066.

    Google Scholar 

  • Goldberg, E. G., 1957: Biogeochemistry of trace metals. In: Treatise on Marine Ecology and Paleoecology. Ed. J. W. Hedgepath, Geol. Soc. Amer. Mem., 67, 345–357.

    Google Scholar 

  • Hart, R. A., 1970: Chemical exchange between sea-water and deep ocean basalts. Earth Planet. Sci. Letters 9, 269–279.

    Google Scholar 

  • Hart, R. A., 1973: A model for chemical exchange in the basalt-seawater system of oceanic layer II. Can. J. Earth Sci., 10, 799–816.

    Google Scholar 

  • Hart, R. A., 1976: Progressive alteration of the oceanic crust. In: Initial Reports of the Deep Sea Drilling Project 34, 433–437. U. S. Gov’t Printing Office.

    Google Scholar 

  • Hart, S. R., 1969: K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts. Earth Planet. Sci. Letters, 6, 295–303.

    Google Scholar 

  • Hart, S. R., 1971: K, Rb, Cs, Sr and Ba contents and Sr isotope ratios of ocean floor basalts. Phil. Trans. Roy. Soc. London A 268, 573–587.

    Google Scholar 

  • Hart, S. R., and A. M. Nalwalk, 1970: K, Rb, Cs and Sr relationships in submarine basalts from the Puerto Rico Trench. Geochim. Cosmochim. Acta 34, 145–156.

    Google Scholar 

  • Hart, S. R., and H. Staudigel, 1978: Oceanic crust: age of hydrothermal alteration. Geophys. Res. Letters 5, 1009–1012.

    Google Scholar 

  • Hart, S. R., and H. Staudigel, 1982: The control of alkalies and uranium in sea water by ocean crust alteration. Earth Planet. Sci. Letters 58 (2) 202–212.

    Article  CAS  Google Scholar 

  • Hay, R. L., and A. Iijima, 1968a: Petrology of palagonite tuffs of Koko Craters, Oahu, Hawaii. Contrib. Mineral. Petrol. 17, 141–154.

    Google Scholar 

  • Hay, R. L., and A. Iijima, 1968b: Nature and origin of palagonite tuffs of the Honolulu Group on Oahu, Hawaii. Geol. Soc. Amer. Mem. 116, 331–376.

    Article  CAS  Google Scholar 

  • Hekinian, R., 1968: Rocks from the mid-oceanic ridge in the Indian Ocean. Deep-Sea Res. 15, 195–213.

    Google Scholar 

  • Hekinian, R., 1971: Chemical and mineralogical differences between abyssal hill basalts and ridge tholeiites in the Eastern Pacific Ocean. Mar. Geol. 11, 77–91.

    Google Scholar 

  • Hekinian, R., and F. Aumento, 1973: Rocks from the Gibbs Fracture Zone and the Minia Seamount near 53°N in the Atlantic Ocean. Mar. Geol., 14, 47–72.

    CAS  Google Scholar 

  • Henrichs, S., and G. Thompson, 1976: The low temperature weathering of oceanic basalts by seawater: 2. trace element fluxes. Geol. Soc. Amer. Ann. Mtg. 6, 1098.

    Google Scholar 

  • Holland, H. D., 1965: The history of ocean water and its effect on the chemistry of the atmosphere. Proc. Natl. Acad. Sci., 53, 1173–1183.

    Article  CAS  Google Scholar 

  • Holland, H. D., 1972: The geologic history of seawater - an attempt to solve the problem. Geochim. Cosmochim. Acta 36, 637–657.

    Google Scholar 

  • Holland, H. D., 1978: The Chemistry of the Atmosphere and Oceans. J. Wiley, N. Y., 351 pp.

    Google Scholar 

  • Honnorez, J., 1967: La palagonitization: l’alteration sous-marine du verre volcanique basique de Palagonia (Sicile). Ph. D. Thesis, Univ. of Bruxelles.

    Google Scholar 

  • Honnorez, J., 1972: La palagonitization: l’alteration sous-marine du verre volcanique basique de Palagonia (Sicile). Vulkaninstitut I. Friedl. Zurich, 9, 1–132.

    Google Scholar 

  • Honnorez, J., 1981: The aging of the oceanic crust at low temperature. In: The Oceanic Lithosphere. Ed. Emiliani, E. The Sea, 7, 525–587. J. Wiley, N. Y.

    Google Scholar 

  • Honnorez, J., J. K. Bohlke, B. M. Honnorez-Guerstein, 1978: Petrographical and geochemical study of the low temperature submarine alteration of basalt from Hole 396B, Leg 46. In: Initial Reports of the Deep Sea Drilling Program 46, 299–329. U. S. Gov’t. Printing Office.

    Google Scholar 

  • Humphris, S. E. and G. Thompson, 1978a: Hydrothermal alteration of oceanic basalts by seawater. Geochim. et Cosmochim. Acta, 42, 107–125.

    Google Scholar 

  • Humphris, S. E. and G. Thompson, 1978b: Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim. et Cosmochim. Acta 42, 127–136.

    Google Scholar 

  • Humphris, S. E., R. N. Thompson, and G. F. Marriner, 1979: The mineralogy and geochemistry of basalt weathering, Holes 417A and 418A. In: Initial Reports of the Deep Sea Drilling Project, 51–53 1201–1217. U. S. Gov’t Printing Office.

    Google Scholar 

  • Ito, E., 1979: High temperature metamorphism of plutonic rocks from the mid-Cayman Rise: a petrographic and oxygen isotopic study. Ph.D. Thesis, Univ. of Chicago, Ill.

    Google Scholar 

  • Jakobsson, S. P., 1972: On the consolidation and palagonitization of the Tephra of Surtsey Volcanic Island, Iceland. Mus. Natl. Hist. Reykjavik Papers 60, 1–8.

    Google Scholar 

  • Jakobsson, S. P., 1978: Environmental factors controlling the palagonitization of the Surtsey Tephra, Iceland. Bull. Geol. Soc. Denmark 27, 91–105.

    Google Scholar 

  • Jenkins, W. J. J. M. Edmond, and J. B. Corliss, 1978: Excess 3He and 4He in Galapagos submarine hydrothermal waters. Nature 272, 156–158.

    CAS  Google Scholar 

  • Johnson, D. V., 1979: Crack distribution in the upper oceanic crust and its effects upon seismic velocity, structure, formation permeability and fluid circulation. In: Initial Reports of the Deep Sea Drilling Project 51–53, 1479–1490. U. S. Gov’t Printing Office.

    Google Scholar 

  • Lawrence, J. R., 1979: Temperatures of formation of calcite veins in the basalts from DSDP holes 417A and 417D. In: Initial Reports of the Deep Sea Drilling Project 51–53, 1183–1184. U. S. Gov’t Printing Office.

    Google Scholar 

  • Lister, C. R. B., 1981: Active and passive hydrothermal systems in the oceanic crust: predicted physical conditions. In: The Dynamic Environment of the Ocean Floor 441–470. Fanning, K. A., and F. T. Manheim, ( Eds.) Lexington Books.

    Google Scholar 

  • Livingstone, D. A., 1963: Chemical composition of rivers and lakes. U. S. Geol. Surv. Prof. Paper 440G.

    Google Scholar 

  • Ludden, J. N., and G. Thompson, 1978: Behavior of rare earth elements during submarine weathering of tholeiitic basalt. Nature 274, 147–148.

    CAS  Google Scholar 

  • Ludden, J. N., and G. Thompson, 1979: An evaluation of the behavior of the rare earth elements during the weathering of sea-floor basalt. Earth Planet. Sci. Letters 43, 85–92.

    Google Scholar 

  • Mackenzie, F. T., and R. M. Garrels, 1966: Chemical mass balance between rivers and oceans. Amer. J. Sci. 264, 507–525.

    Google Scholar 

  • Matthews, D. H., 1971: Altered basalts from Swallow Bank, an abyssal hill in the N. E. Atlantic, and from a nearly seamount. Phil. Trans. Roy. Soc. London A 168, 551–571.

    Google Scholar 

  • McCulloch, M. T., R. T. Gregory, G. J. Wasserburg, and H. P. Taylor, 1980: A neodymium, strontium, and oxygen isotopic study of Cretaceous Samail ophiolite, and implications for the petrogenesis and seawater-hydrothermal alteration of oceanic crust. Earth Planet. Sci. Letters 46, 201–211.

    Google Scholar 

  • Melson, W. G., 1973: Basaltic glasses from the Deep Sea Drilling Project - chemical characteristics, compositions of alteration products, and fission track “ages”. EOS Trans. Am. Geophys. Union 54 (11) 1011–1014.

    Google Scholar 

  • Melson, W. G., and Tj. H. van Andel, 1966: Metamorphism in the mid-Atlantic ridge, 22°N latitude. Mar. Geol., 4, 165–186.

    CAS  Google Scholar 

  • Melson, W. G., V. T. Bowen, Tj. H. Van Andel, and R. Siever, 1966: Greenstones from the central valley of the mid-Atlantic ridge. Nature 209, 604–605.

    Google Scholar 

  • Melson, W. G., G. Thompson, and Tj. H. van Andel, 1968: Volcanism and metamorphism in the mid-Atlantic Ridge, 22°N latitude. J. Geophys. Res., 73, 5925.

    Google Scholar 

  • Melson, W. G., and G. Thompson, 1971: Petrology of a transform fault zone and adjacent ridge segments. Phil. Trans. Roy. Soc. London A 268, 423–441.

    Google Scholar 

  • Melson, W. G., and G. Thompson, 1973: Glassy abyssal basalts, Atlantic seafloor near St. Paul’s Rocks: petrography and composition of secondary clay minerals. Geol. Soc. Amer. Bull., 84, 703–716.

    Google Scholar 

  • Mevel, C., 1979: Mineralogy and chemistry of secondary phases in low temperature altered basalts from DSDP legs 51, 52, and 53. In: Initial Reports of the Deep Sea Drilling Project, 51–53 1299–1312. U. S. Gov’t Printing Office.

    Google Scholar 

  • Mevel, C., 1981: Occurrence of pumpellyite in hydrothermally altered basalts from the Vema Fracture Zone. Cont. Min. and Petrol. 76, 386–393.

    Google Scholar 

  • Miyashiro, A., 1973: The Troodos ophiolitic conplex was probably formed in an island arc. Earth Planet. Sci. Letters 19, 218–224.

    Article  CAS  Google Scholar 

  • Miyashiro, A., F. Shido, and M. Ewing, 1969: Diversity and origin of abyssal tholeitte from the mid-Atlantic ridge near 24° and 30°N latitude. Contrib. Mineral. Petrol. 23, 38–52.

    Google Scholar 

  • Miyashiro, A., F. Shido, and M. Ewing, 1971: Metamorphism in the mid-Atlantic Ridge near 24°N and 30°N. Phil. Trans. Roy. Soc. London A 268, 589–603.

    Google Scholar 

  • Miyashiro, A., F. Shido, and K. Kanehira, 1979: Metasomatic chloritization of gabbros in the Mid-Atlantic Ridge near 30°N. Mar. Geol., 31, M47 - M52.

    CAS  Google Scholar 

  • Moore, J. G., 1966: Rate of palagonitization of submarine basalt adjacent to Hawaii. U. S. Geol. Surv. Prof. Paper 550, D163–D171.

    Google Scholar 

  • Mottl, M. J., 1976: Chemical exchange between seawater and basalt during hydrothermal alteration of the oceanic crust. Ph. D. Thesis, Harvard University.

    Google Scholar 

  • Mottl, M. J., 1982: Metabasalts, axial hot springs and the structure of hydrothermal systems at mid-ocean ridges. Geol. Soc. Amer. Bull. (in press).

    Google Scholar 

  • Mottl, M. J., R. M. Anderson, W. J. Jenkins, and J. R. Lawrence, 1982: Chemistry of waters sampled from basaltic basement in DSDP holes 501, 504B and 505B. In: Initial Reports of the Deep Sea Drilling Program 68–70 (in press).

    Google Scholar 

  • Muehlenbachs, K., and R. H. Clayton, 1972: Oxygen isotope geochemistry of submarine greenstones. Can. J. Earth Sci. 9, 471–478.

    Google Scholar 

  • Muehlenbachs, K., and R. H. Clayton, 1976: Oxygen isotope composition of the oceanic crust and its bearing on seawater. J. Geophys. Res., 81, 4365–4369.

    Google Scholar 

  • Murray, J., and A. F. Renard, 1891: In: Deep Sea Deposits, Report on Sci. Results of Voyage of H. M. S. Challenger. Chapt. 5. HMSO, London.

    Google Scholar 

  • Nicholls, G. D. and V. T. Bowen, 1961: Natural glass from beneath red clay on the floor of the Atlantic. Nature 192, 156–157.

    Google Scholar 

  • Paster, T. P., 1968: Petrologic variations within submarine basalt pillows of the South Pacific-Antarctic Ocean. Ph. D. Thesis, Florida State Univ.

    Google Scholar 

  • Philpotts, J. A., C. C. Schnetzler, and S. R. Hart, 1969: Submarine basalts: some K, Rb, Sr, Ba, rare earths, H2O and CO2 data bearing on their alteration, modification by plagioclase and possible source materials. Earth Planet. Sci. Letters 7, 293–299.

    Google Scholar 

  • Pytkowicz, R. M., and D. R. Kester, 1971: The physical chemistry of seawater. In: Ann. Rev. Ocean. Mar. Biol. 9, 11–60.

    Google Scholar 

  • Quon, S. H., and E. G. Ehrlers, 1963: Rocks of northern part of mid-Atlantic ridge. Geol. Soc. Amer. Bull., 74, 1–8.

    Google Scholar 

  • Richardson, S. H., S. R. Hart, and H. Staudigel, 1980: Vein mineral ages of old oceanic crust. J. Geophys. Res. 85, 7195–7200.

    Google Scholar 

  • Rivers, M., 1976: The chemical effects of low temperature alteration of seafloor basalt. M. Sc. Thesis, Geology Dept., Harvard Univ.

    Google Scholar 

  • Robinson, P. T., M. F. J. Flowers, H. U. Schminke, and W. Ohnmacht, 1977: Low temperature alteration of oceanic basalts, DSDP Leg 37. In: Initial Reports of the Deep Sea Drilling Program 37, 775–793. U. S. Gov’t Printing Office.

    Google Scholar 

  • Rona, P. A., 1980: TAG hydrothermal field: mid-Atlantic ridge crest at 26°N. J. Geol. Soc. London 137, 385–402.

    Google Scholar 

  • Rona, P. A., K. Bostrom, and S. Epstein, 1980: Hydrothermal quartz vug from the Mid-Atlantic ridge. Geology 8, 569–572.

    CAS  Google Scholar 

  • Rozanova, T. V., and G. N. Baturin, 1971: Hydrothermal ore shows in the floor of the Indian Ocean. Oceanology 11, 874–879.

    Google Scholar 

  • Rubey, W. W., 1951: Geological history of seawater: an attempt to state the problem. Bull. Geol. Soc. Amer. 62, 1111–1147.

    Article  CAS  Google Scholar 

  • Russel, K. L., 1970: Geochemistry and halmyrolysis of clay minerals, Rio Ameca, Mexico. Geochim. Cosmochim. Acta 34, 893–907.

    Google Scholar 

  • Scott, R. B., and A. Hajash, 1976: Initial submarine alteration of basaltic pillow lavas: a microprobe study. Amer. J. Sci., 276, 480–501.

    Google Scholar 

  • Scott, R. B., D. G. Temple, and P. R. Peron, 1981: The nature of hydrothermal exchange between oceanic crust and seawater at 26°N latitude, MAR. In: The dynamic environment of the sea floor. Fanning, K. S., and F. T. Manheim, ( Eds. ): Heath and Co., p. 381–416.

    Google Scholar 

  • Seyfried, W. S., M. J. Mottl, and J. L. Bischoff, 1978: Seawater/basalt ratio effects on the chemistry and mineralogy of spilites from the ocean floor. Nature 275, 211–213.

    CAS  Google Scholar 

  • Seyfried, W. E., and J. L. Bischoff, 1979: Low temperature basalt alteration by seawater: an experimental study at 70°C and 150° C. Geochim. et Cosmochim. Acta 43, 1937–1947.

    Google Scholar 

  • Shand, S. J., 1949: Rocks of the mid-Atlantic ridge. J. Geol. 57, 89–92.

    Google Scholar 

  • Shido, F., A. Miyashiro, and M. Ewing, 1974: Compositional variation in pillow lavas from the mid-Atlantic ridge. Mar. Geol. 16, 177–190.

    Article  CAS  Google Scholar 

  • Siever, R., 1968: Sedimentological consequences of a steady-state ocean-atmosphere. Sedimentology 11, 5–29.

    CAS  Google Scholar 

  • Sillen, L. G., 1961: The physical chemistry of seawater. In: Oceanography p. 549–581. Sears, M., Ed.: Amer. Assoc. for Adv. Sci., Washington, D. C.

    Google Scholar 

  • Sillen, L. G., 1967: Gibbs phase rule and marine sediments. In: Equilibrium Concepts in Natural Water Systems. Adv. in. Chem. series, 64, 56–69, Washington, D.C.

    Google Scholar 

  • Sommer, S., and L. Ailin-Pyzik, 1978: Microscale spatial distribution of trace elements in altered portions of DSDP basalts. EOS, 59, 1111 (Abstract).

    Google Scholar 

  • Speiss, F. N., K. C. MacDonald, T. Atwater, R. Ballard, A. Carranza, D. Cordoba, C. Cox, V. M. Garcia, J. Francheteau, J. Guerrero, J. Hawkins, R. Haymon, R. Hessler, T. Juteau, M. Kastner, R. Larson, B. Luyendyk, J. B. Macdougall, S. Miller, W. Normark, J. Orcutt, and C. Rangin, 1980: East Pacific Rise: hot springs and geophysical experiments. Science 207, 1421–1933.

    Google Scholar 

  • Spooner, E. T. C., and W. S. Fyfe, 1973: Sub-seafloor metamorphism, heat and mass transfer. Contr. Mineral. Petrol. 42, 287–304.

    Google Scholar 

  • Spooner, E. T. C., H. J. Chapman, and J. D. Smewing, 1977: Strontium isotopic contamination and oxidation during ocean floor hydrothermal metamorphism of the ophiolitic rocks of the Troodos Massif, Cyprus. Geochim. Cosmochim Acta 41, 873–890.

    Google Scholar 

  • Stjces. D. S. and K. F. Scheidegger, 1981: Temporal variations in secondary minerals from Nazca plate basalts, diabases, and microgabbros. In: Nazca Plate: Curstal Formation and Andean Convergence. Geol. Soc. Am. Mem. 154, 109–130.

    Google Scholar 

  • Stakes, D. S., and J. R. O’Neil, 1982: Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks. Earth Planet. Sci. Letters, 57, 285–304.

    Google Scholar 

  • Staudigel, H., W. B. Bryan, and G. Thompson, 1979: Chemical variation in glass-whole rock pairs from individual cooling units in holes 417D and 418A. In: Initial Reports of the Deep Sea Drilling Project 51–53, 977–986. U. S. Gov’t. Printing Office.

    Google Scholar 

  • Staudigel, H., S. R. Hart, and S. H. Richardson, 1981: Alteration of the oceanic crust: processes and timing. Earth Planet. Sci. Letters 52, 311–327.

    Google Scholar 

  • Stumm, W., and J. J. Morgan, 1981: Aquatic Chemistry. 2nd Edn. J. Wiley, N. Y., 780 pp.

    Google Scholar 

  • Thompson, G., 1973: A geochemical study of the low temperature interaction of seawater and oceanic igneous rock. Trans. Amer. Geophys. Union, 54, 1015–1019.

    Google Scholar 

  • Thompson, G., and W. G. Melson, 1972: The petrology of oceanic crust across fracture zones in the Atlantic ocean: evidence of a new kind of seafloor spreading. J. Geol. 80, 526–538.

    Google Scholar 

  • Thompson, G., and M. Rivers, 1976: The low temperature weathering of oceanic basalts by seawater: 1. major element fluxes. Geol. Soc. Amer. Ann. Mtg. 8, 1137 (Abstract).

    Google Scholar 

  • Thompson, G., and S. E. Humphris, 1977: Seawater-rock interaction in the oceanic basement. In: Proc. 2nd Internatl. Sym. Water-Rock Interact. v. III, 3. Eds. Pacquet, H., Tardy, Y.: Univ. L. Pasteur, Strasbourg.

    Google Scholar 

  • Tiezzi, L. J., and R. B. Scott, 1980: Crystal fractionation in a cumulate gabbro, MAR 26°N. J. Geophys. Res. 85, 5438–5454.

    Google Scholar 

  • Wiseman, J. D. H., 1937: Basalts from the Carlsberg Ridge, Indian Ocean. Geological and mineralogical investigations John Murray Expedition. Brit. Mus., Natl. Sci. 3, 1–28.

    Google Scholar 

  • Wolery, T. J., 1979: Seawater-ocean crust hydrothermal chemistry: some theoretical considerations. EOS, 60, 863 (Abstract).

    Google Scholar 

  • Wolery, T. J., and N. H. Sleep, 1976: Hydrothermal circulation and geochemical flux at mid-ocean ridges. J. Geol., 84, 249–276.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thompson, G. (1983). Basalt — Seawater Interaction. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (eds) Hydrothermal Processes at Seafloor Spreading Centers. NATO Conference Series, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0402-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0402-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0404-1

  • Online ISBN: 978-1-4899-0402-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics