Skip to main content

Optical Diffraction by Electrodes: Use of Fourier Transforms in Spectroelectrochemistry

  • Chapter
  • 283 Accesses

Abstract

The information content of an electrochemical experiment can be greatly enhanced by the addition of an optical probe to provide spectral information about material generated at the electrode surface. Methods combining UV-visible spectroscopy with electrochemistry were developed in the 1960’s, mainly by Kuwana1,2 and Murray3 and have proved very valuable for the characterization and monitoring of electrogenerated species. The technique described in this chapter also involves UV-visible spectroscopy of electrochemical processes, but makes use of the diffraction of light by an electrode. The diffraction pattern is a spatial Fourier transform of the illuminated electrode, and contains information about chromophores generated by an electrode process. Advantages of the diffraction approach to spectroelectrochemistry include high sensitivity, fast time response, and the possibility of describing the spatial distribution of chromophore in solution. After a discussion of the objectives of the diffractive approach, its theory and experimental verification will be described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuwana, T., Darlington, R. K., and Leedy, D. W. 1964, Anal. Chem. 36, 2023.

    Article  CAS  Google Scholar 

  2. For reviews, see: Kuwana, T., and Winograd, N. 1978, in Electro-analytical Chemistry, Vol. 7, ed. A. J. Bard, Dekker, N.Y.

    Google Scholar 

  3. Heineman, W. 1978, Anal. Chem. 50, 390A; and

    Article  CAS  Google Scholar 

  4. Kuwana, T., and Heineman, W. R. 1976, Acct. Chem. Res. 9, 241.

    Article  CAS  Google Scholar 

  5. Murray, R. W., Heineman, W. R., and O’Dom, G. W. 1967, Anal. Chem. 39, 1666.

    Article  CAS  Google Scholar 

  6. See, for example, Bard, A. J., and Faulkner, L. R. 1980, Electrochemical Methods, John Wiley & Sons, N.Y.

    Google Scholar 

  7. Nicholson, R. S., and Shain, I. 1964, Anal. Chem. 36, 706.

    Article  CAS  Google Scholar 

  8. Flato, J. 1972, Anal. Chem. 44, 75A.

    Article  CAS  Google Scholar 

  9. Kuwana, T. 1973, Ber. Bunsenges Phys. Chem. 77, 858.

    CAS  Google Scholar 

  10. Muller, R. H. 1973, Adv. Electrochem. Eng. 9, 281.

    CAS  Google Scholar 

  11. Pruiksma, R., and McCreery, R. L. 1979, Anal. Chem. 51, 2253.

    Article  CAS  Google Scholar 

  12. Pruiksma, R., and McCreery, R. L. 1981, Anal. Chem. 53, 202.

    Article  CAS  Google Scholar 

  13. The Kirchoff-Huygens approach is discussed in most physics textbooks. Clear treatments are presented in: Longhurst, R. S. 1957, Geometrical and Physical Optics, Lungmans, Green & Co., N.Y., p. 193; and Marcuse, D. 1972, Light Transmission Optics, Van Nostrand Reinhold, N.Y., p. 31.

    Google Scholar 

  14. Rossi, P., McCurdy, C. W., and McCreery, R. L. 1981, J. Amer. Chem. Soc. 103, 2524.

    Article  CAS  Google Scholar 

  15. See ref. 11a, p. 195; ref. 11b, p. 39.

    Google Scholar 

  16. Gaskill, J. P. 1978, Linear Systems, Fourier Transforms, and Optics, John Wiley & Sons, N.Y., p. 376.

    Google Scholar 

  17. Vest, C. M. 1979, Holographic Interferometry, John Wiley & Sons, N.Y., p. 21.

    Google Scholar 

  18. See Pruiksma, R. 1980, Ph.D. thesis, The Ohio State University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCreery, R.L., Rossi, P. (1982). Optical Diffraction by Electrodes: Use of Fourier Transforms in Spectroelectrochemistry. In: Marshall, A.G. (eds) Fourier, Hadamard, and Hilbert Transforms in Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0336-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0336-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0338-9

  • Online ISBN: 978-1-4899-0336-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics