Skip to main content

Path Integral Simulation of Long-Time Dynamics in Quantum Dissipative Systems

  • Chapter
Functional Integration

Part of the book series: NATO ASI Series ((NSSB,volume 361))

Abstract

Feynman’s path integral approach to time-dependent quantum mechanics1 has found wide application in many areas of physics. Its most celebrated successes include situations where the effects of a dissipative environment on the system of interest can be adequately represented via a bath of harmonic oscillators. Due to its Gaussian character, the multidimensional bath can be integrated out,2 giving rise to reduced-dimension descriptions of the dynamics which in simple cases are amenable to a host of analytic approximations. Another major field where path integral ideas have proven extremely useful is quantum statistical mechanics.3 Expressing equilibrium averages of many-body systems in path integral form allows, after appropriate discretization, numerical evaluation via stochastic integration schemes.4 By contrast, the use of numerical methods to compute real-time path integral expressions of many-particle systems has not been met with success. The reason behind the failure of numerical schemes lies in the oscillatory nature of the quantum mechanical propagator which renders stochastic integration methods inappropriate.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20:367 (1948).

    Article  MathSciNet  ADS  Google Scholar 

  2. R. P. Feynman and F. L. Vernon, Jr., The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24:118 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  3. R. P. Feynman, Statistical Mechanics, Addison-Wesley, Redwood City (1972).

    Google Scholar 

  4. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, H. Teller, and E. Teller, J. Chem. Phys. 21:1087 (1953).

    Article  ADS  Google Scholar 

  5. N. Makri, Feynman path integration in quantum dynamics, Comp. Phys. Comm. 63:389 (1991).

    Article  ADS  MATH  Google Scholar 

  6. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and M. Zwerger, Dynamics of the dissipati ve two-state system, Rev. Mod. Phys. 59:1 (1987).

    Article  ADS  Google Scholar 

  7. R Kubo, M. Toda, and N. Hashitsume, Statistical Physics, 2nd ed., Springer-Verlag, Heidelberg (1991).

    MATH  Google Scholar 

  8. N. Makri, Improved Feynman propagators on a grid and non-adiabatic corrections within the path integral framework, Chem. Phys. Lett. 193:435 (1992).

    Article  ADS  Google Scholar 

  9. A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121:587 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. N. Makri, Numerical path integral techniques for long-time quantum dynamics of dissipative systems, J. Math. Phys. 36:2430 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. D. E. Makarov and N. Makri, Path integrals for dissipative systems by tensor multiplication: condensed phase quantum dynamics for arbitrarily long time, Chem. Phys. Lett. 221:482 (1994).

    Article  ADS  Google Scholar 

  12. N. Makri and D. E. Makarov, Tensor multiplication for iterative quantum time evolution of reduced density matrices. I. Theory, J. Chem. Phys. 102:4600 (1995).

    Article  ADS  Google Scholar 

  13. N. Makri and D. E. Makarov, Tensor multiplication for iterative quantum time evolution of reduced density matrices. II. Numerical methodology, J. Chem. Phys. 102:4611 (1995).

    Article  ADS  Google Scholar 

  14. E. Sim and N. Makri, Tensor propagator with weight-selected paths for quantum dissipative dynamics with long-memory kernels, Chem. Phys. Lett. 249:224 (1996).

    Article  ADS  Google Scholar 

  15. E. Sim and N. Makri, Filtered propagator functional for iterative dynamics of quantum dissipative systems, Comp. Phys. Commun. (in press).

    Google Scholar 

  16. Z. Bacic and J. C. Light, Theoretical methods for rovibrational states of floppy molecules, Annu. Rev. Phys. Chem. 40:469 (1989).

    Article  ADS  Google Scholar 

  17. M. Topaler and N. Makri, System-specific discrete variable representations for path integral calculations with quasi-adiabatic propagators, Chem. Phys. Lett. 210:448 (1993).

    Article  ADS  Google Scholar 

  18. H.A. Kramers, Brownian motion an a field of force and the diffusion model of chemical reactions, Physica (Utrecht) 7:284 (1940).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. G. R. Fleming and P. Hänggi, Activated barrier crossing, World Scientific, Singapore (1993).

    Google Scholar 

  20. M. Topaler and N. Makri, Quantum rates for a double well coupled to a dissipative bath: accurate path integral results and comparisons with approximate theories, J. Chem. Phys 101:7500 (1994).

    Article  ADS  Google Scholar 

  21. W. H. Miller, S. D. Schwartz, and J. W. Tromp, Quantum mechanical rate constants for bimolecular reactions, J. Chem. Phys. 79:4889 (1983).

    Article  ADS  Google Scholar 

  22. P. G. Wolynes, Quantum theory of activated events in condensed phases, Phys. Rev. Lett. 47:968 (1981).

    Article  ADS  Google Scholar 

  23. G. A. Voth, Path integral centroid methods in quantum statistical mechanics and dynamics, Adv. Chem. Phys. 93:135 (1996).

    Article  Google Scholar 

  24. P. Hänggi, E. Pollak, and H. Grabert, Report No. 215, 1989.

    Google Scholar 

  25. I. Rips and E. Pollak, Quantum Kramers model: solution of the turnover problem, Phys. Rev. A 41:5366 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  26. J. N. Onuchic and P. G. Wolynes, Classical and quantum pictures of reaction dynamics in condensed matter: resonances, dephasing, and all that, J. Phys. Chem. 92:6495 (1988).

    Article  Google Scholar 

  27. F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Coherent destruction of tunneling, Phys. Rev. Lett. 67:516 (1991).

    Article  ADS  Google Scholar 

  28. F. Grossmann and P. Hänggi, Localization in a driven two-level dynamics, Europhysics Letters 18:571 (1992).

    Article  ADS  Google Scholar 

  29. M Grifoni, M. Sassetti, J. Stockburger, and U. Weiss, Nonlinear response of a periodically driven damped two-state system, Phys. Rev. E 48:3497 (1993).

    Article  ADS  Google Scholar 

  30. T. Dittrich, B. Oeschlagel, and P. Hänggi, Driven tunneling with dissipation, Europhys. Lett. 22:5 (1993).

    Article  ADS  Google Scholar 

  31. D. E. Makarov and N. Makri, Control of dissipative tunneling dynamics by continuous wave electromagnetic fields: localization and large-amplitude coherent motion, Phys. Rev. E 52:5863 (1995).

    Article  ADS  Google Scholar 

  32. N. Makri and Liqiang Wei, Universal delocalization rate in driven dissipative two-level systems at high temperature, Phys. Rev. E (in press).

    Google Scholar 

  33. N. Makri, Stabilization of localized states in dissipative tunneling systems interacting with monochromatic fields, J. Chem. Phys. (in press).

    Google Scholar 

  34. D. E. Makarov and N. Makri, Stochastic resonance and nonlinear response in double quantum well structures, Phys. Rev. B 52:R2257 (1995).

    Article  ADS  Google Scholar 

  35. S. Schmidt, T. Arlt, P. Hamm, H. Hüber, T. Nägele, J. Wachtveitl, M. Meyer, H. Scheer and W. Zinth, Energetics of the primary electron transfer reaction revealed by ultrafast spectroscopy on modified bacterial reaction centers, Chem. Phys. Lett. 223:116 (1994).

    Article  ADS  Google Scholar 

  36. R. Egger, C. H. Mak, and U. Weiss, Rate concept and retarted master equations for dissipative tight-binding models, Phys. Rev. E 50:R655 (1994).

    Article  ADS  Google Scholar 

  37. R. Egger and C. H. Mak (unpublished).

    Google Scholar 

  38. N. Makri, E. Sim, D. E. Makarov, and M. Topaler, Long-time quantum simulation of the primary charge separation in bacterial photosynthesis, Proc. Natl. Acad. Sci. U.S.A. 93:3926 (1996).

    Article  ADS  Google Scholar 

  39. E. Sim and N. Makri, Path integral simulation of charge transfer dynamics in photosynthetic reaction centers, J. Phys. Chem. (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Makri, N. (1997). Path Integral Simulation of Long-Time Dynamics in Quantum Dissipative Systems. In: DeWitt-Morette, C., Cartier, P., Folacci, A. (eds) Functional Integration. NATO ASI Series, vol 361. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0319-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0319-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0321-1

  • Online ISBN: 978-1-4899-0319-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics