Advertisement

Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms

  • A. Sokal
Part of the NATO ASI Series book series (NSSB, volume 361)

Abstract

These notes are an updated version of lectures given at the Cours de Troisième Cycle de la Physique en Suisse Romande (Lausanne, Switzerland) in June 1989. We thank the Troisième Cycle de la Physique en Suisse Romande and Professor Michel Droz for kindly giving permission to reprint these notes.

Keywords

Ising Model Coarse Grid Multigrid Method Monte Carlo Algorithm Autocorrelation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Bakhvalov, Méthodes Numériques (MIR, Moscou, 1976), Chapter 5.Google Scholar
  2. [2]
    J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods (Methuen, London, 1964), Chapter 5.MATHCrossRefGoogle Scholar
  3. [3]
    W. W. Wood and J. J. Erpenbeck, Ann. Rev. Phys. Chem. 27, 319 (1976).ADSCrossRefGoogle Scholar
  4. [4]
    J. G. Kemeny and J. L. Snell, Finite Markov Chains (Springer, New York, 1976).MATHGoogle Scholar
  5. [5]
    M. Iosifescu, Finite Markov Processes and Their Applications (Wiley, Chichester, 1980).MATHGoogle Scholar
  6. [6]
    K. L. Chung, Markov Chains with Stationary Transition Probabilities, 2nd ed. (Springer, New York, 1967).Google Scholar
  7. [7]
    E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators (Cambridge Univ. Press, Cambridge, 1984).MATHCrossRefGoogle Scholar
  8. [8]
    D. Revuz, Markov Chains (North-Holland, Amsterdam, 1975).MATHGoogle Scholar
  9. [9]
    Z. Šidak, Czechoslovak Math. J. 14, 438 (1964).MathSciNetGoogle Scholar
  10. [10]
    A. D. Sokal and L. E. Thomas, J. Stat. Phys. 54, 797 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  11. [11]
    P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).ADSCrossRefGoogle Scholar
  12. [12]
    S. Caracciolo and A. D. Sokal, J. Phys. A19, L797 (1986).ADSGoogle Scholar
  13. [13]
    D. Goldsman, Ph. D. thesis, School of Operations Research and Industrial Engineering, Cornell University (1984)Google Scholar
  14. L. Schruben, Oper. Res. 30, 569 (1982) and 31, 1090 (1983).MATHCrossRefGoogle Scholar
  15. [14]
    M. B. Priestley, Spectral Analysis and Time Series, 2 vols. (Academic, London, 1981), Chapters 5–7.MATHGoogle Scholar
  16. [15]
    T. W. Anderson, The Statistical Analysis of Time Series (Wiley, New York, 1971).MATHGoogle Scholar
  17. [16]
    N. Madras and A. D. Sokal, J. Stat. Phys. 50, 109 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  18. [17]
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys. 21, 1087 (1953).ADSCrossRefGoogle Scholar
  19. [18]
    W. K. Hastings, Biometrika 57, 97 (1970).MATHCrossRefGoogle Scholar
  20. [19]
    J. Goodman and N. Madras, Lin. Alg. Appl. 216, 61 (1995).MathSciNetMATHCrossRefGoogle Scholar
  21. [20]
    J. Goodman and A. D. Sokal, Phys. Rev. D40, 2035 (1989).ADSGoogle Scholar
  22. [21]
    G. F. Mazenko and O. T. Vails, Phys. Rev. B24, 1419 (1981)ADSGoogle Scholar
  23. C. Kalle, J. Phys. A17, L801 (1984)ADSGoogle Scholar
  24. J. K. Williams, J. Phys. A18, 49 (1985)ADSGoogle Scholar
  25. R. B. Pearson, J. L. Richardson and D. Toussaint, Phys. Rev. B31, 4472 (1985)ADSGoogle Scholar
  26. S. Wansleben and D. P. Landau, J. Appl. Phys. 61, 3968 (1987).ADSCrossRefGoogle Scholar
  27. [22]
    M. N. Barber, in Phase Transitions and Critical Phenomena, vol. 8, ed. C. Domb and J. L. Lebowitz (Academic Press, London, 1983).Google Scholar
  28. [23]
    K. Binder, J. Comput. Phys. 59, 1 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  29. [24]
    G. Parisi, in Progress in Gauge Field Theory (1983 Cargèse lectures), ed. G.’ t Hooft et al. (Plenum, New York, 1984)Google Scholar
  30. G. G. Batrouni, G. R. Katz, A. S. Kronfeld, G. P. Lepage, B. Svetitsky and K. G. Wilson, Phys. Rev. D32, 2736 (1985)ADSGoogle Scholar
  31. C. Davies, G. Batrouni, G. Katz, A. Kronfeld, P. Lepage, P. Rossi, B. Svetitsky and K. Wilson, J. Stat. Phys. 43, 1073 (1986)ADSCrossRefGoogle Scholar
  32. J. B. Kogut, Nucl. Phys. B275 [FS17], 1 (1986)ADSCrossRefGoogle Scholar
  33. S. Duane, R. Kenway, B. J. Pendleton and D. Roweth, Phys. Lett. 176B, 143 (1986)ADSGoogle Scholar
  34. E. Dagotto and J. B. Kogut, Phys. Rev. Lett. 58, 299 (1987) and Nucl. Phys. B290 [FS20], 451 (1987).MathSciNetADSCrossRefGoogle Scholar
  35. [25]
    J. Goodman and A. D. Sokal, Phys. Rev. Lett. 56, 1015 (1986).ADSCrossRefGoogle Scholar
  36. [26]
    R. G. Edwards, J. Goodman and A. D. Sokal, Nucl. Phys. B354, 289 (1991).ADSCrossRefGoogle Scholar
  37. [27]
    R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).ADSCrossRefGoogle Scholar
  38. [28]
    R. P. Fedorenko, Zh. Vychisl. i Mat. Fiz. 4, 559 (1964) [USSR Comput. Math. and Math. Phys. 4, 227 (1964)].MathSciNetGoogle Scholar
  39. [29]
    L. P. Kadanoff, Physics 2, 263 (1966).Google Scholar
  40. [30]
    K. G. Wilson, Phys. Rev. B4, 3174, 3184 (1971).ADSGoogle Scholar
  41. [31]
    A. Brandt, in Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics (Paris, July 1972), ed. H. Cabannes and R. Temam (Lecture Notes in Physics #18) (Springer, Berlin, 1973)Google Scholar
  42. R. A. Nicolaides, J. Comput. Phys. 19, 418 (1975) and Math. Comp. 31, 892 (1977)MathSciNetADSMATHCrossRefGoogle Scholar
  43. A. Brandt, Math. Comp. 31, 333 (1977); W. Hackbusch, in Numerical Treatment of Differential Equations (Oberwolfach, July 1976), ed. R. Bulirsch, R. D. Griegorieffand J. Schröder (Lecture Notes in Mathematics #631) (Springer, Berlin, 1978).MathSciNetMATHCrossRefGoogle Scholar
  44. [32]
    W. Hackbusch, Multi-Grid Methods and Applications (Springer, Berlin, 1985).MATHCrossRefGoogle Scholar
  45. [33]
    W. Hackbusch and U. Trottenberg, editors, Multigrid Methods (Lecture Notes in Mathematics #960) (Springer, Berlin, 1982); Proceedings of the First Copper Mountain Conference on Multigrid Methods, ed. S. McCormick and U. Trottenberg, Appl. Math. Comput. 13, no. 3–4, 213-470 (1983)MATHGoogle Scholar
  46. D. J. Paddon and H. Holstein, editors, Multigrid Methods for Integral and Differential Equations (Clarendon Press, Oxford, 1985); Proceedings of the Second Copper Mountain Conference on Multigrid Methods, ed. S. McCormick, Appl. Math. Comput. 19, no. 1–4, 1-372 (1986)MATHGoogle Scholar
  47. W. Hackbusch and U. Trottenberg, editors, Multigrid Methods II (Lecture Notes in Mathematics #1228) (Springer, Berlin, 1986)MATHCrossRefGoogle Scholar
  48. S. F. McCormick, editor, Multigrid Methods (SIAM, Philadelphia, 1987); Proceedings of the Third Copper Mountain Conference on Multigrid Methods, ed. S. McCormick (Dekker, New York, 1988).MATHGoogle Scholar
  49. [34]
    W. L. Briggs, A Multigrid Tutorial (SIAM, Philadelphia, 1987).MATHGoogle Scholar
  50. [35]
    R. S. Varga, Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, N. J., 1962).Google Scholar
  51. [36]
    H. R. Schwarz, H. Rutishauer and E. Stiefel, Numerical Analysis of Symmetric Matrices (Prentice-Hall, Englewood Cliffs, N. J., 1973).Google Scholar
  52. [37]
    A. M. Ostrowski, Rendiconti Mat. e Appl. 13, 140 (1954) at p. 141n [A. Ostrowski, Collected Mathematical Papers, vol. 1 (Birkhaüser, Basel, 1983), p. 169n].MathSciNetGoogle Scholar
  53. [38]
    J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York-London, 1970).MATHGoogle Scholar
  54. [39]
    S. F. McCormick and J. Ruge, Math. Comp. 41, 43 (1983).MathSciNetMATHCrossRefGoogle Scholar
  55. [40]
    J. Mandel, S. McCormick and R. Bank, in Multigrid Methods, ed. S. F. McCormick (SIAM, Philadelphia, 1987), Chapter 5.Google Scholar
  56. [41]
    J. Goodman and A. D. Sokal, unpublished.Google Scholar
  57. [42]
    R. G. Edwards, S. J. Ferreira, J. Goodman and A. D. Sokal, Nucl. Phys. B380, 621 (1992).ADSCrossRefGoogle Scholar
  58. [43]
    S. L. Adler, Phys. Rev. Lett. 60, 1243 (1988).ADSCrossRefGoogle Scholar
  59. [44]
    S. L. Adler, Phys. Rev. D23, 2091 (1981).Google Scholar
  60. [45]
    C. Whitmer, Phys. Rev. D29, 306 (1984).ADSGoogle Scholar
  61. [46]
    E. Nelson, in Constructive Quantum Field Theory, ed. G. Velo and A. Wightman (Lecture Notes in Physics #25) (Springer, Berlin, 1973).Google Scholar
  62. [47]
    B. Simon, The P (φ)2 Euclidean (Quantum) Field Theory (Princeton Univ. Press, Princeton, N. J., 1974), Chapter I.Google Scholar
  63. [48]
    R. B. Potts, Proc. Camb. Phil. Soc. 48, 106 (1952).MathSciNetADSMATHCrossRefGoogle Scholar
  64. [49]
    F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982); 55, 315 (E) (1983).ADSCrossRefGoogle Scholar
  65. [50]
    K. Krickeberg, Probability Theory (Addison-Wesley, Reading, Mass., 1965), Sections 4.2 and 4.5.MATHGoogle Scholar
  66. [51]
    R. H. Schonmann, J. Stat. Phys. 52, 61 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  67. [52]
    A. D. Sokal, unpublished.Google Scholar
  68. [53]
    E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms: Theory and Practice (Prentice-Hall, Englewood Cliffs, N. J., 1977), Chapter 8; A. Gibbons, Algorithmic Graph Theory (Cambridge University Press, 1985), Chapter 1; S. Even, Graph Algorithms (Computer Science Press, Potomac, Maryland, 1979), Chapter 3.Google Scholar
  69. [54]
    B. A. Galler and M. J. Fischer, Commun. ACM 7, 301, 506 (1964)MATHCrossRefGoogle Scholar
  70. D. E. Knuth, The Art of Computer Pmgramming, vol. 1, 2 nd ed., (Addison-Wesley, Reading, Massachusetts, 1973), pp. 353-355, 360, 572Google Scholar
  71. J. Hoshen and R. Kopelman, Phys. Rev. B14, 3438 (1976).ADSGoogle Scholar
  72. [55]
    K. Binder and D. Stauffer, in Applications of the Monte Carlo Method in Statistical Physics, ed. K. Binder (Springer-Verlag, Berlin, 1984), section 8.4CrossRefGoogle Scholar
  73. D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1985).MATHCrossRefGoogle Scholar
  74. [56]
    Y Shiloach and U. Vishkin, J. Algorithms 3, 57 (1982).MathSciNetMATHCrossRefGoogle Scholar
  75. [57]
    R. G. Edwards, X.-J. Li and A. D. Sokal, Sequential and vectorized algorithms for computing the connected components of an undirected graph, unpublished (and uncompleted) notes.Google Scholar
  76. [58]
    P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Japan 26 (Suppl.), 11 (1969)Google Scholar
  77. C. M. Fortuin and P. W. Kasteleyn, Physica 57, 536 (1972)MathSciNetADSCrossRefGoogle Scholar
  78. C. M. Fortuin, Physica 58, 393 (1972)MathSciNetADSCrossRefGoogle Scholar
  79. C. M. Fortuin, Physica 59, 545 (1972).MathSciNetADSCrossRefGoogle Scholar
  80. [59]
    C.-K. Hu, Phys. Rev. B29, 5103 (1984)ADSGoogle Scholar
  81. T. A. Larsson, J. Phys. A19, 2383 (1986) and A20, 2239 (1987).MathSciNetADSGoogle Scholar
  82. [60]
    R. G. Edwards and A. D. Sokal, Phys. Rev. D38, 2009 (1988).MathSciNetADSGoogle Scholar
  83. [61]
    A. D. Sokal, in Computer Simulation Studies in Condensed Matter Physics: Recent Developments (Athens, Georgia, 15–26 February 1988), ed. D. P. Landau, K. K. Mon and H.-B. Schüttler (Springer-Verlag, Berlin-Heidelberg, 1988).Google Scholar
  84. [62]
    X.-J. Li and A. D. Sokal, Phys. Rev. Lett. 63, 827 (1989).ADSCrossRefGoogle Scholar
  85. [63]
    W. Klein, T. Ray and P. Tamayo, Phys. Rev. Lett. 62, 163 (1989).ADSCrossRefGoogle Scholar
  86. [64]
    T. S. Ray, P. Tamayo and W. Klein, Phys. Rev. A39, 5949 (1989).ADSGoogle Scholar
  87. [65]
    U. Wolff, Phys. Rev. Lett. 62, 361 (1989).ADSCrossRefGoogle Scholar
  88. [66]
    U. Wolff, Phys. Lett. B228, 379 (1989)ADSGoogle Scholar
  89. P. Tamayo, R. C. Brower and W. Klein, J. Stat. Phys. 58, 1083 (1990) and 60, 889 (1990).MathSciNetADSCrossRefGoogle Scholar
  90. [67]
    D. Kandel, E. Domany, D. Ron, A. Brandt and E. Loh, Phys. Rev. Lett. 60, 1591 (1988)MathSciNetADSCrossRefGoogle Scholar
  91. D. Kandel, E. Domany and A. Brandt, Phys. Rev. B40, 330 (1989).ADSGoogle Scholar
  92. [68]
    R. G. Edwards and A. D. Sokal, Swendsen-Wang algorithm augmented by duality transformations for the two-dimensional Potts model, in preparation.Google Scholar
  93. [69]
    R. Ben-Av, D. Kandel, E. Katznelson, P. G. Lauwers and S. Solomon, J. Stat. Phys. 58, 125 (1990)MathSciNetADSCrossRefGoogle Scholar
  94. R. C. Brower and S. Huang, Phys. Rev. B41, 708 (1990).ADSGoogle Scholar
  95. [70]
    F. Niedermayer, Phys. Rev. Lett. 61, 2026 (1988).ADSCrossRefGoogle Scholar
  96. [71]
    R. C. Brower and P. Tamayo, Phys. Rev. Lett. 62, 1087 (1989).ADSCrossRefGoogle Scholar
  97. [72]
    U. Wolff, Nucl. Phys. B322, 759 (1989); Phys. Lett. B222, 473 (1989); Nucl. Phys. B334, 581 (1990).ADSCrossRefGoogle Scholar
  98. [73]
    R. G. Edwards and A. D. Sokal, Phys. Rev. D40, 1374 (1989).ADSGoogle Scholar
  99. [74]
    P. G. DeGennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca NY, 1979).Google Scholar
  100. [75]
    C. Aragäo de Carvalho, S. Caracciolo and J. Fröhlich, Nucl. Phys. B215 [FS7], 209 (1983).Google Scholar
  101. [76]
    A. Berretti and A. D. Sokal, J. Stat. Phys. 40, 483 (1985).MathSciNetADSCrossRefGoogle Scholar
  102. [77]
    G. Lawler and A. D. Sokal, Trans. Amer. Math. Soc. 309, 557 (1988).MathSciNetMATHGoogle Scholar
  103. [78]
    G. Lawler and A. D. Sokal, in preparation.Google Scholar
  104. [79]
    B. Berg and D. Foerster, Phys. Lett. 106B, 323 (1981).MathSciNetADSGoogle Scholar
  105. [80]
    C. Aragão de Carvalho and S. Caracciolo, J. Physique 44, 323 (1983).MathSciNetCrossRefGoogle Scholar
  106. [81]
    A. D. Sokal and L. E. Thomas, J. Stat. Phys. 51, 907 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  107. [82]
    S. Caracciolo, A. Pelissetto and A. D. Sokal, J. Stat. Phys. 60, 1 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  108. [83]
    M. Delbrück, in Mathematical Problems in the Biological Sciences (Proc. Symp. Appl. Math., vol. 14), ed. R. E. Bellman (American Math. Soc., Providence RI, 1962).Google Scholar
  109. [84]
    P. H. Verdier and W. H. Stockmayer, J. Chem. Phys. 36, 227 (1962).ADSCrossRefGoogle Scholar
  110. [85]
    N. Madras and A. D. Sokal, J. Stat. Phys. 47, 573 (1987).MathSciNetADSCrossRefGoogle Scholar
  111. [86]
    M. Lal, Molec. Phys. 17, 57 (1969).ADSCrossRefGoogle Scholar
  112. [87]
    B. MacDonald et al., J. Phys. A18, 2627 (1985).ADSGoogle Scholar
  113. [88]
    K. Kawasaki, Phys. Rev. 148, 375 (1966).MathSciNetADSCrossRefGoogle Scholar
  114. [89]
    B. I. Halperin, Phys. Rev. B8, 4437 (1973).ADSGoogle Scholar
  115. [90]
    R. Alicki, M. Fannes and A. Verbeure, J. Stat. Phys. 41, 263 (1985).MathSciNetADSCrossRefGoogle Scholar
  116. [91]
    M. P. M. den Nijs, J. Phys. A12, 1857 (1979)ADSGoogle Scholar
  117. J. L. Black and V. J. Emery, Phys. Rev. B23, 429 (1981)ADSGoogle Scholar
  118. B. Nienhuis, J. Stat. Phys. 34, 731 (1984).MathSciNetADSMATHCrossRefGoogle Scholar
  119. [92]
    A. Sinclair and M. Jerrum, Information and Computation 82, 93 (1989).MathSciNetMATHCrossRefGoogle Scholar
  120. [93]
    R. Brooks, P. Doyle and R. Kohn, in preparation.Google Scholar
  121. [94]
    L. N. Vasershtein, Prob. Inform. Transm. 5, 64 (1969).MathSciNetGoogle Scholar
  122. [95]
    O. E. Lanford III, in Statistical Mechanics and Mathematical Problems (Lecture Notes in Physics #20), ed. A. Lenard (Springer, Berlin, 1973).Google Scholar
  123. [96]
    M. Aizenman and R. Holley, in Percolation Theory and Ergodic Theory of Infinite Particle Systems, ed. H. Kesten (Springer, New York, 1987).Google Scholar

Added Bibliography (December 1996)

  1. [97]
    M. Lüscher, P. Weisz and U. Wolff, Nucl. Phys. B359, 221 (1991).ADSCrossRefGoogle Scholar
  2. [98]
    J.-K. Kim, Phys. Rev. Lett. 70, 1735 (1993); Nucl. Phys. B (Proc. Suppl.) 34, 702 (1994); Phys. Rev. D50, 4663 (1994); Europhys. Lett. 28, 211 (1994); Phys. Lett. B345, 469 (1995).ADSCrossRefGoogle Scholar
  3. [99]
    S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto and A. D. Sokal, Phys. Rev. Lett. 74, 2969 (1995).ADSCrossRefGoogle Scholar
  4. [100]
    S. J. Ferreira and A. D. Sokal, Phys. Rev. B51, 6720 (1995).ADSGoogle Scholar
  5. [101]
    S. Caracciolo, R. G. Edwards, A. Pelissetto and A. D. Sokal, Phys. Rev. Lett. 75, 1891 (1995).ADSCrossRefGoogle Scholar
  6. [102]
    G. Mana, A. Pelissetto and A. D. Sokal, Phys. Rev. D54, R1252 (1996).ADSGoogle Scholar
  7. [103]
    G. Mana, A. Pelissetto and A. D. Sokal, hep-lat/9610021, submitted to Phys. Rev. D.Google Scholar
  8. [104]
    C.-R. Hwang and S.-J. Sheu, in Stochastic Models, Statistical Methods, and Algorithms in Image Analysis (Lecture Notes in Statistics #74), ed. P. Barone, A. Frigessi and M. Piccioni (Springer, Berlin, 1992).Google Scholar
  9. [105]
    B. Gidas, private communication (1991).Google Scholar
  10. [106]
    T. Mendes and A. D. Sokal, Phys. Rev. D53, 3438 (1996).ADSGoogle Scholar
  11. [107]
    G. Mana, T. Mendes, A. Pelissetto and A. D. Sokal, Nucl. Phys. B (Proc. Suppl.) 47, 796 (1996).ADSCrossRefMATHGoogle Scholar
  12. [108]
    T. Mendes and A. Pelissetto and A. D. Sokal, Nucl. Phys. B477, 203 (1996).ADSCrossRefGoogle Scholar
  13. [109]
    A. D. Sokal, Nucl. Phys. B (Proc. Suppl.) 20, 55 (1991).MathSciNetADSCrossRefGoogle Scholar
  14. [110]
    J.-S. Wang and R. H. Swendsen, Physica A167, 565 (1990).MathSciNetADSGoogle Scholar
  15. [111]
    C. F. Baillie and P. D. Coddington, Phys. Rev. Lett. 68, 962 (1992); and private communication.ADSCrossRefGoogle Scholar
  16. [112]
    J. Salas and A. D. Sokal, J. Stat. Phys. 85, 297 (1996).MathSciNetADSMATHCrossRefGoogle Scholar
  17. [113]
    J. Salas and A. D. Sokal, Dynamic critical behavior of the Swendsen-Wang algorithm: The two-dimensional 3-state Potts model revisited, hep-lat/9605018, J. Stat. Phys. 87, no. 1/2 (April 1997).Google Scholar
  18. [114]
    J. Salas and A. D. Sokal, Logarithmic corrections and finite-size scaling in the two-dimensional 4-State Potts model, hep-lat/9607030, submitted to J. Stat. Phys.Google Scholar
  19. [115]
    G. M. Torrie and J. P. Valleau, Chem. Phys. Lett. 28, 578 (1974); J. Comput. Phys. 23, 187 (1977); J. Ghem. Phys. 66, 1402 (1977).ADSCrossRefGoogle Scholar
  20. [116]
    B. A. Berg and T. Neuhaus, Phys. Lett. B267, 249 (1991); Phys. Rev. Lett. 68, 9 (1992).ADSGoogle Scholar
  21. [117]
    B. A. Berg, Int. J. Mod. Phys. C4, 249 (1993).ADSGoogle Scholar
  22. [118]
    A. D. Kennedy, Nucl. Phys. B (Proc. Suppl.) 30, 96 (1993).ADSCrossRefGoogle Scholar
  23. [119]
    W. Janke, in Computer Simulations in Condensed Matter Physics VII, eds. D. P. Landau, K. K. Mon and H.-B. Schüttler (Springer-Verlag, Berlin, 1994).Google Scholar
  24. [120]
    S. Wiseman and E. Domany, Phys. Rev. E 48, 4080 (1993).ADSCrossRefGoogle Scholar
  25. [121]
    D. Kandel, R. Ben-Av and E. Domany, Phys. Rev. Lett. 65, 941 (1990) and Phys. Rev. B45, 4700 (1992).ADSCrossRefGoogle Scholar
  26. [122]
    J.-S. Wang, R. H. Swendsen and R. Kotecky, Phys. Rev. Lett. 63, 109 (1989).ADSCrossRefGoogle Scholar
  27. [123]
    J.-S. Wang, R. H. Swendsen and R. Kotecky, Phys. Rev. B42, 2465 (1990).ADSGoogle Scholar
  28. [124]
    M. Lubin and A. D. Sokal, Phys. Rev. Lett. 71, 1778 (1993).ADSCrossRefGoogle Scholar
  29. [125]
    X.-J. Li and A. D. Sokal, Phys. Rev. Lett. 67, 1482 (1991).MathSciNetADSMATHCrossRefGoogle Scholar
  30. [126]
    S. Caracciolo, R. G. Edwards, A. Pelissetto and A. D. Sokal, Nucl. Phys. B403, 475 (1993).ADSCrossRefGoogle Scholar
  31. [127]
    A. D. Sokal, in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, ed. K. Binder (Oxford University Press, New York, 1995).Google Scholar
  32. [128]
    A. D. Sokal, Nucl. Phys. B (Proc. Suppl.) 47, 172 (1996).ADSCrossRefGoogle Scholar
  33. [129]
    B. Li, N. Madras and A. D. Sokal, J. Stat. Phys. 80, 661 (1995).MathSciNetADSMATHCrossRefGoogle Scholar
  34. [130]
    A. D. Sokal, Europhys. Lett. 27, 661 (1994).ADSCrossRefGoogle Scholar
  35. [131]
    P. Diaconis and D. Stroock, Ann. Appl. Prob. 1, 36 (1991).MathSciNetMATHCrossRefGoogle Scholar
  36. [132]
    A. J. Sinclair, Randomised Algorithms for Counting and Generating Combinatorial Structures (Birkhäuser, Boston, 1993).CrossRefGoogle Scholar
  37. [133]
    P. Diaconis and L. Saloff-Coste, Ann. Appl. Prob. 3, 696 (1993).MathSciNetMATHCrossRefGoogle Scholar
  38. [134]
    P. Diaconis and L. Saloff-Coste, Ann. Appl. Prob. 6, 695 (1996).MathSciNetMATHCrossRefGoogle Scholar
  39. [135]
    P. Diaconis and L. Saloff-Coste, J. Theoret. Prob. 9, 459 (1996).MathSciNetMATHCrossRefGoogle Scholar
  40. [136]
    M. Jerrum and A. Sinclair, in Approximation Algorithms for NP-Hard Problems, ed. D. S. Hochbaum (PWS Publishing, Boston, 1996).Google Scholar
  41. [137]
    D. Randall and A. J. Sinclair, in Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (ACM Press, New York, 1994).Google Scholar
  42. [138]
    D. W. Stroock and B. Zegarlinski, J. Funct. Anal. 104, 299 (1992).MathSciNetMATHCrossRefGoogle Scholar
  43. [139]
    D. W. Stroock and B. Zegarlinski, Commun. Math. Phys. 144, 303 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  44. [140]
    D. W. Stroock and B. Zegarlinski, Commun. Math. Phys. 149, 175 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  45. [141]
    S. L. Lu and H. T. Yau, Commun. Math. Phys. 156, 399 (1993).MathSciNetADSMATHCrossRefGoogle Scholar
  46. [142]
    F. Martinelli and E. Olivieri, Commun. Math. Phys. 161, 447, 487 (1994).MathSciNetADSMATHCrossRefGoogle Scholar
  47. [143]
    D. W. Stroock and B. Zegarlinski, J. Stat. Phys. 81, 1007 (1995).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • A. Sokal
    • 1
  1. 1.Department of PhysicsNew York UniversityNew YorkUSA

Personalised recommendations