Skip to main content

Mixing Exact Exchange with GGA: When to Say When

  • Chapter
Electronic Density Functional Theory

Abstract

The local spin density (LSD) approximation [1] has long been the method of choice for solid-state physics calculations. With the advent of generalized gradient approximations (GGAs) [2–7], density functional calculations for bond energies became an inexpensive alternative to traditional ab-initio quantum chemical calculations [8]. The recently derived PBE approximation [9] reduces the mean absolute error on a set of 20 small molecules from 31 kcal/mol in LSD to 8 kcal/mol. Both LSD and PBE approximations are non-empirical, in that all their parameters (other than the exchange-correlation energy per electron of a uniform gas) are fundamental constants. PBE is a simplification of the PW91 GGA [5–7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W. Kohn and L.J. Sham, Phys. Rev. 140, A 1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  2. J.P. Perdew, Phys. Rev. Lett. 55, 1665 (1985); 55, 2370 (1985) (E).

    Article  ADS  Google Scholar 

  3. A.D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  4. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  5. J.P. Perdew, in Electronic Structure of Solids’ 91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), page 11.

    Google Scholar 

  6. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).; 48, 4978 (1993) (E).

    Article  ADS  Google Scholar 

  7. K. Burke, J.P. Perdew, and Y. Wang, Derivation of a, generalized gradient approximation: The PW91 density functional, chapter in the present volume.

    Google Scholar 

  8. Modern Density Functional Theory: A Tool for Chemistry, edited by J. M. Seminario and P. Politzer (Elsevier, Amsterdam, 1995).

    Google Scholar 

  9. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); ibid. 78, 1396 (1997)(E).

    Article  ADS  Google Scholar 

  10. A. Zupan, K. Burke, M. Ernzerhof, and J. P. Perdew, J. Chem. Phys. 106, 10184 (1997).

    Article  ADS  Google Scholar 

  11. A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  12. A. Becke, J. Chem. Phys. 104, 1040 (1996).

    Article  ADS  Google Scholar 

  13. L.A. Curtiss, K. Raghavachari, P.C. Redfern, and J.A. Pople, J. Chem. Phys. 106, 1063 (1997), and references therein.

    Article  ADS  Google Scholar 

  14. M. Ernzerhof, J.P. Perdew, and K. Burke, Int. J. Quantum Chem. 64, 285 (1997).

    Article  Google Scholar 

  15. K. Burke, M. Ernzerhof, and J.P. Perdew, Chem. Phys. Lett. 265, 115 (1997).

    Article  ADS  Google Scholar 

  16. J.P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).

    Article  ADS  Google Scholar 

  17. M. Ernzerhof, Chem. Phys. Lett. 263, 499 (1996).

    Article  ADS  Google Scholar 

  18. M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).

    Article  ADS  Google Scholar 

  19. D.C. Langreth and J.P. Perdew, Solid State Commun. 17, 1425 (1975).

    Article  ADS  Google Scholar 

  20. O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976).

    Article  ADS  Google Scholar 

  21. J. Harris, Phys. Rev. A 29, 1648 (1984).

    Article  ADS  Google Scholar 

  22. M. Taut, J. Phys. A 27, 1045 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Levy, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. Seminario (Elsevier, Amsterdam, 1996).

    Google Scholar 

  24. C. J. Umrigar and X. Gonze, in High Performance Computing and its Application to the Physical Sciences, Proceedings of the Mardi Gras 1993 Conference, edited by D. A. Browne et al (World Scientific, Singapore, 1993).

    Google Scholar 

  25. M. Levy and J.P. Perdew, Phys. Rev. A 32, 2010 (1985).

    Article  ADS  Google Scholar 

  26. M. Levy, N.H. March, and N.C. Handy, J. Chem. Phys. 104, 1989 (1996).

    Article  ADS  Google Scholar 

  27. K. Burke, chapter in the present volume.

    Google Scholar 

  28. A.D. Becke, J. Chem. Phys. 98, 1372 (1993).

    Article  ADS  Google Scholar 

  29. M. Levy and J.A. Goldstein, Phys. Rev. B 35, 7887 (1987).

    Article  ADS  Google Scholar 

  30. K. Burke, J.P. Perdew, and M. Levy, Phys. Rev. A 53, R2915 (1996).

    Article  ADS  Google Scholar 

  31. O. Gritsenko, R. van Leeuwen, and E.J. Baerends, Int. J. Quantum Chem. S30, 163 (1997).

    Google Scholar 

  32. E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427 (1981).

    Article  Google Scholar 

  33. M. Levy and J. P. Perdew, Phys. Rev. B 48, 11638 (1993).

    Article  ADS  Google Scholar 

  34. M. Ernzerhof, unpublished results.

    Google Scholar 

  35. A. Görling and M. Levy, Phys. Rev. B 47, 13105 (1993).

    Article  ADS  Google Scholar 

  36. J.P. Perdew, M. Ernzerhof, K. Burke, and A. Savin, Int. J. Quantum Chem. 61, 197 (1997).

    Article  Google Scholar 

  37. M. Ernzerhof, K. Burke, and J. P. Perdew, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. Seminario (Elsevier, Amsterdam, 1996).

    Google Scholar 

  38. K. Burke, J.P. Perdew, and M. Ernzerhof, Int. J. Quantum Chem. 61, 287 (1997).

    Article  Google Scholar 

  39. K. Burke, F. Cruz, and K.C. Lam, work in progress.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burke, K., Perdew, J.P., Ernzerhof, M. (1998). Mixing Exact Exchange with GGA: When to Say When. In: Dobson, J.F., Vignale, G., Das, M.P. (eds) Electronic Density Functional Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0316-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0316-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0318-1

  • Online ISBN: 978-1-4899-0316-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics