Skip to main content

Current-Density Functional Theory of Linear Response to Time-Dependent Electromagnetic Fields

  • Chapter
Electronic Density Functional Theory

Abstract

Local density approximations are known to be very useful in calculating the ground-state exchange and correlation (xc) energy of many-electron systems [1], and local approximations are gaining in importance for the description of xc effects in time-dependent situations also [2,3]. Most of the time-dependent work has dealt with a scalar time-dependent xc potential \({v_{xc}}(\vec r,\omega )\) approximated as a local functional of the time-dependent density \(n(\vec r,\omega )\) as described in the chapter “Time-dependent density functional theory” in the introductory section of this Book. Despite much progress in this scalar approach, it will be shown in this Chapter that existing approximations for v xc require modification. In particular, it will be shown that (i) there is no local density approximation for the scalar xc potential at finite frequency (ii) there is, however, a consistent local approximation for a vector xc potential \({{\vec a}_{xc}}(\vec r,\omega )\) in terms of the dynamic current density \(\vec j(\vec r,\omega )\) and its space derivatives, as well as the ground-state density and its space derivatives. This approximation is valid, at a given frequency, for sufficiently slow spatial variations of the ground-state density and of the perturbing dynamic potential. The appropriately modified vector xc potential will be derived here in some detail, thus filling out the brief description published recently [4]. New material will also be presented, providing interpretation of the findings in the simple case of one dimensional inhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  2. E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).

    Article  ADS  Google Scholar 

  3. E. K. U. Gross and W. Kohn, Adv. Quantum Chemistry 21, 255 (1990).

    Article  ADS  Google Scholar 

  4. A. Zangwill and P. Soven Phys. Rev. Lett. 45, 204 (1980); Phys. Rev. B 24, 4121 (1981).

    Article  ADS  Google Scholar 

  5. G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996).

    Article  ADS  Google Scholar 

  6. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997, (1984).

    Article  ADS  Google Scholar 

  7. In this paper, a function \(f(\vec r\, - \,\vec r)\) is said to be of short range if the integral \(\int {f(\vec r,\,\vec r\, + \vec s)} d\vec s\) is finite. This is equivalent to saying that the Fourier transform of f, with wave vector →k, with respect to the separation \(\vec s\, = \,\vec r\, - \,\vec r\), remains finite in the limit \(\vec k \to 0.\).

    Google Scholar 

  8. H.M. Böhm, S. Conti, and M. P. Tosi, J. Phys.: Condensed Matter 8, 781 (1996).

    Article  ADS  Google Scholar 

  9. J. F. Dobson, Phys. Rev. Lett. 73, 2244 (1994).

    Article  ADS  Google Scholar 

  10. W. Kohn, Phys. Rev. 123, 1242 (1961), L. Brey et al, Phys. Rev. B 40, 10647 (1989); ibid. 42, 1240 (1990); S. K. Yip, Phys. Rev. B 43, 1707 (1991).

    Article  ADS  MATH  Google Scholar 

  11. J. F. Dobson, M. Bünner, and E. K. U. Gross, Phys. Rev. Lett. 79, 1905 (1997).

    Article  ADS  Google Scholar 

  12. J. F. Dobson, Proceedings of the NATO ASI on Density Functional Theory, edited by E. K. U. Gross and R. M. Dreizler (Plenum, New York, 1994), p. 393.

    Google Scholar 

  13. G. Vignale, Phys. Rev. Lett. 74, 3233 (1995).

    Article  ADS  Google Scholar 

  14. G. Vignale, Phys. Lett. A 209, 206 (1995).

    Article  ADS  Google Scholar 

  15. P. Nozières, The Theory of Interacting Fermi Systems (W. A. Benjamin, New York, 1964), Chapter 6.

    Google Scholar 

  16. Tai Kai Ng, Phys. Rev. Lett. 62, 2417 (1989).

    Article  ADS  Google Scholar 

  17. K. S. Singwi and M. P. Tosi, in Solid State Physics, edited by H. Ehrenreich, F. Scitz, and D. Turnbull (Academic, New York, 1981), Vol. 36, p. 177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vignale, G., Kohn, W. (1998). Current-Density Functional Theory of Linear Response to Time-Dependent Electromagnetic Fields. In: Dobson, J.F., Vignale, G., Das, M.P. (eds) Electronic Density Functional Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0316-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0316-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0318-1

  • Online ISBN: 978-1-4899-0316-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics