Skip to main content

Ligation-Mediated PCR for Analysis of Oxidative DNA Damage

  • Chapter
Technologies for Detection of DNA Damage and Mutations

Abstract

Reactive oxygen species (ROS), including Superoxide anion, hydrogen peroxide (H2O2), hydroxyl radical, and singlet oxygen, may play an important role in promoting aging and neoplastic transformation (reviewed in Breimer, 1990; Floyd, 1990; Halliwell and Gutteridge, 1990; Piette, 1991; Ames et al., 1993; Guyton and Kensler, 1993; Nohl, 1993). Part of this role may be mediated by ROS-induced DNA mutations at critical sites. ROS, which are produced by any oxidative stress, are known to cause promutagenic damage due to a direct interaction of hydroxyl radicals and singlet oxygen with DNA (Breimer, 1990). ROS can be produced by a variety of exogenous and intracellular mechanisms, including ionizing radiation, cigarette smoke, air pollutants, toxins, UV light, inflammation, and intracellular metabolism (Guyton and Kensler, 1993). Ames (1987) has estimated that each human cell sustains an average of 103 “oxidative hits” each day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, B. N. (1987). Oxidative DNA damage, cancer, and aging. Ann. Intern. Med. 107:526–545.

    Article  PubMed  Google Scholar 

  • Ames, B. N., Shigenaga, M. K., and Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA 90:7915–7922.

    Article  PubMed  CAS  Google Scholar 

  • Aruoma, O. L, Halliwell, B., Gajewski, E., and Dizaroglu, M. (1991), Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem. J. 273:601–604.

    PubMed  CAS  Google Scholar 

  • Boiteux, S. (1993). Properties and biological functions of the NTH and FPG proteins of Escherichia coli; two DNA glycosylases that repair oxidative damage in DNA. J. Photochem. Photobiol. B Biol. 19:87–96.

    Article  CAS  Google Scholar 

  • Boveris, A. (1977). Mitochondrial production of Superoxide radical and hydrogen peroxide. Adv. Exp. Med. Biol 75:67–82.

    Article  Google Scholar 

  • Breimer, L. H. (1990). Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: The role of DNA base damage. Mol. Carcinogen. 3:188–197.

    Article  CAS  Google Scholar 

  • Bryan, S. E., and Frieden, E. (1967). Interaction of copper(II) with deoxyribunucleic acid below 30 degrees. Biochemistry 6:2728–2734.

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman, K. H., and Slater, T. F. (1993). An introduction to free radical biochemistry. Br. Med. Bull. 49:481–493.

    PubMed  CAS  Google Scholar 

  • Chevion, M. (1988). A site-specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals. J. Free Radicals Biol. Med. 5:27–37.

    Article  CAS  Google Scholar 

  • Church, G. M., and Gilbert, W. (1984). Genomic sequencing. Proc. Nati Acad. Sci. USA 81:1991–1995.

    Article  CAS  Google Scholar 

  • Dizdaroglu, M. (1991). Chemical determination of free radical-induced damage to DNA. J. Free Radicals Biol. Med. 10:225–242.

    Article  CAS  Google Scholar 

  • Dizdaroglu, M. (1992). Oxidative damage to DNA in mammalian chromatin. Mutat. Res. 275:331–342.

    Article  PubMed  CAS  Google Scholar 

  • Dizdaroglu, M., Rao, G., Halliwell, B., and Gajewski, E. (1991a). Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Arch. Biochem. Biophys. 285:317–324.

    Article  PubMed  CAS  Google Scholar 

  • Dizdaroglu, M., Nackerdien, Z., Chao, B.-C, Gajewski, E., and Rao, G. (1991b). Chemical nature of in vivo DNA base damage in hydrogen peroxide-treated mammalian cells. Arch. Biochem. Biophys. 268:388–390.

    Article  Google Scholar 

  • Doetsch, P. W., and Cunningham, R. P. (1990). The enzymology of apurinic/apyrimidinic endonucleases. Mutat. Res. 236:173–201.

    Article  PubMed  CAS  Google Scholar 

  • Drouin, R., Rodriguez, H., Gao, S., Gebreyes, Z., O’Connor, T. R., Holmquist, G. P., and Akman, S. A. (1996). Cupric ion/ascorbate/H2O2-induced DNA damage: DNA-bound copper ion primarily induces base modifications. Free Rad. Biol. Med., in press.

    Google Scholar 

  • Floyd, R. A. (1990). Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4:2587–2597.

    PubMed  CAS  Google Scholar 

  • Floyd, R. A., Watson, J. J., Harris, J., West, M., and Wong, P. K. (1986). Formation of 8-hydroxy-deoxyguanosine, hydroxyl free radical adduct of DNA in granulocytes exposed to tumor promoter, tetradeconyl phorbol-acetate. Biochem. Biophys. Res. Commun. 137:841–846.

    Article  PubMed  CAS  Google Scholar 

  • Floyd, R. A., West, M. S., Eneff, K. L., Hogsett, W. E., and Tingey, D. T. (1988). Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA. Arch. Biochem. Biophys. 262:266–272.

    Article  PubMed  CAS  Google Scholar 

  • Geierstanger B. H., Kagawa, T. F., Chen, S.-L., Quigley, G. J., and Ho, P. S. (1991). Base-specific binding of copper(II) to Z-DNA. J. Biol. Chem. 266:20185–20191.

    PubMed  CAS  Google Scholar 

  • Goldstein, S., and Czapski, G. (1986). The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from toxicity of O-2. J. Free Radical Biol. Med. 2:3–11.

    CAS  Google Scholar 

  • Guyton, K. Z., and Kensler, T. W. (1993). Oxidative mechanisms in carcinogenesis. Br. Med. Bull. 49:523–544.

    PubMed  CAS  Google Scholar 

  • Halliwell, B., and Aruoma, O. I. (1991). DNA damage by oxygen-derived species. FEBS Lett. 281:9–19.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C. (1990). Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 186:1–85.

    Article  PubMed  CAS  Google Scholar 

  • Hatahet, Z., Kow, Y. W, Purmal, A. A., Cunningham, R. P., and Wallace, S. S. (1994). New substrates for old enzymes. 5-hydroxy-2′-deoxycytidine and 5-hydroxy-2′-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2′-deoxyuridine is a substrate for uracil DNA N-glycosylase. J. Biol. Chem. 269:18814–18820.

    PubMed  CAS  Google Scholar 

  • Izatt, R. M., Christensen, J. J., and Rytting, J. H. (1971). Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem. Rev. 71:439–457.

    Article  PubMed  CAS  Google Scholar 

  • John, D. C. A., and Douglas, K. T. (1989). Apparent sequence preference in cleavage of linear B-DNA by the Cu(II):thiol system. Biochem. Biophys. Res. Commun. 165:1235–1242.

    Article  PubMed  CAS  Google Scholar 

  • Kagawa, T. F., Geierstanger, B. H., Wang, H.-J., and Ho, P. S. (1991). Covalent modification of guanine bases in double-stranded DNA. J. Biol. Chem. 266:20175–20184.

    PubMed  CAS  Google Scholar 

  • Kasai, H., Crain, P. F, Kuchino, Y, Nishimura, S., Ootsuyama, A., and Tanooka, H. (1986). Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 7:1849–1851.

    Article  PubMed  CAS  Google Scholar 

  • Kazakov, S. A., Astashkina, T. G., Mamaev, S. V., and Vlassov, V. V. (1988). Site-specific cleavage of single-stranded DNAs at unique sites by a copper-dependent redox reaction. Nature 335:186–188.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T., Fritsch, E. F, and Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Masarwa, M., Cohen, H., Meyerstein, D., Hickman, D. L., Bakac, A., and Espenson, J. H. (1988). Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they “Fenton-like” or not? 1. The case of Cu+ and Cr2+. J. Am. Chem. Soc. 110:4293–4297.

    Article  CAS  Google Scholar 

  • Maxam, A. M., and Gilbert, W. (1980). Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.

    Article  PubMed  CAS  Google Scholar 

  • Milne, L., Nicotera, P., Orrenius, S., and Burkitt, M. J. (1993). Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Pro-oxidant properties of glutathione. Arch. Biochem. Biophys. 304:102–109.

    Article  PubMed  CAS  Google Scholar 

  • Minchekova, L. E., and Ivanov, V. I. (1967). Influence of reductants upon optical characteristics of the DNA-Cu2+ complex. Biopolymers 5:615–625.

    Article  Google Scholar 

  • Mueller, P. R., and Wold, B. (1989). In vivo footprinting of a muscle specific enhancer by ligation-mediated PCR. Science 246:780–786.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, P. R., and Wold, B. (1991). Ligation mediated PCR:Applications to genomic footprinting. Methods 2:20–31.

    Article  CAS  Google Scholar 

  • Nohl, H. (1993). Involvement of free radicals in ageing: A consequence or cause of senescence. Br. Med. Bull 49:653–667.

    PubMed  CAS  Google Scholar 

  • Pezzano, H., and Podo, F. (1980). Structure of binary complexes of mono-and polynucleotides with metal ions of the first transition group. Chem. Rev. 80:366–401.

    Article  Google Scholar 

  • Pfeifer, G. P., and Riggs, A. A. (1991). Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permeabilized cells using DNase I and ligation-mediated PCR. Genes Dev. 5:1102–1113.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., and Riggs, A. D. (1993a). Genomic footprinting by ligation mediated polymerase chain reaction, in:PCR Protocols: Current Methods and Applications (B. White, ed.), Humana Press, Totowa, NJ, pp. 153–168.

    Chapter  Google Scholar 

  • Pfeifer, G. P., and Riggs, A. D. (1993b). Genomic sequencing, in:DNA Sequencing Protocols (A. Griffin and H. Griffin, eds.), Humana Press, Totowa, NJ, pp. 169–181.

    Chapter  Google Scholar 

  • Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B., and Riggs, A. D. (1989). Genomic sequencing and methylation analysis by ligation mediated of PCR. Science 246:810–813.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Drouin, R., and Holmquist, G. P. (1993a). Detection of DNA adducts at the DNA sequence level by ligation-mediated PCR. Mutat. Res. 288:39–46.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Singer-Sam, J., and Riggs, A. D. (1993b). Analysis of methylation and chromatin structure. Methods Enzymol. 225:567–583.

    Article  PubMed  CAS  Google Scholar 

  • Piette, J. (1991). Biological consequences associated with DNA oxidation mediated by singlet oxygen. J. Photochem. Photobiol. B Biol. 11:241–260.

    Article  CAS  Google Scholar 

  • Priitz, W. A., Butler, J., and Land, E. J. (1990). Interaction of copper(I) with nucleic acids. Int. J. Radiat. Biol. 58:215–234.

    Article  Google Scholar 

  • Rodriguez, H., Drouin, R., Holmquist, G. P., O’Connor, T. R., Boiteux, S., Laval, J., Doroshow, J. H., and Akman, S. A. (1995). Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated PCR. J. Biol. Chem. 270:17633–17640.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, H., Drouin, R., Holmquist, G. P., and Akman, S. (1996). Repair of a hydrogen-peroxide-induced in vivo footprint in the human hypoxia-inducible factor 1 binding site of the PGK1 gene (unpublished).

    Google Scholar 

  • Rychlik, W., and Rhoads, R.-E. (1989). A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 17:8543–8551.

    Article  PubMed  CAS  Google Scholar 

  • Sagripanti, J.-L., and Kraemer, K. H. (1989). Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. J. Biol Chem. 264:1729–1734.

    PubMed  CAS  Google Scholar 

  • Stoewe, R., and Priitz, W. A. (1987). Copper-catalyzed DNA damage by ascorbate and hydrogen peroxide: Kinetics and yield. J. Free Radicals Biol. Med. 3:97–105.

    Article  CAS  Google Scholar 

  • Wallace, S. S. (1988). AP endonucleases and DNA glycosylases that recognize oxidative DNA damage. Environ. Mol. Mutagen. 12:431–477.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K., and Kawanishi, S. (1989). Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper(II) ion and hydrogen peroxide. J. Biol. Chem. 264:15435–15440.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K., and Kawanishi, S. (1992). Site-specific DNA damage by phenylhydrazine and phenelzine in the presence of Cu(II) ion or Fe(III) complexes: Roles of active oxygen species and carbon radicals. Chem. Res. Toxicol. 5:440–446.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Drouin, R., Rodriguez, H., Holmquist, G.P., Akman, S.A. (1996). Ligation-Mediated PCR for Analysis of Oxidative DNA Damage. In: Pfeifer, G.P. (eds) Technologies for Detection of DNA Damage and Mutations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0301-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0301-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0303-7

  • Online ISBN: 978-1-4899-0301-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics