Skip to main content

DNA Damage Analysis Using an Automated DNA Sequencer

  • Chapter
  • 288 Accesses

Abstract

Advances in biotechnology and molecular genetics have made possible a better understanding of the molecular nature of mutation. For example, the discovery of genetically altered proto-oncogenes and tumor suppressor genes in cancerous cells has led to a better understanding of the links between mutation and cancer. Similarly, the ability to study mutation and mutational specificity in vivo and in vitro has led to an increased appreciation of the mechanisms of mutation and the role that DNA damage and DNA repair play in determining the specificity of mutagenesis. In turn, differences in both the cellular metabolism of exogenous chemicals and DNA repair can at least in part explain tissue, gender, and species specificity of carcinogenesis. We remain, however, a long way off from being able to predict the individual risks implicated with the mutagenic potential of chemical and physical agents. A part of this problem reflects our lack of knowledge of how individual lesions are handled in different tissues and different species against the genetic makeup of an individual.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ansorge, W., Sproat, B., Stegemann, J., Schwager, C., and Zenke, M. (1987). Automated DNA sequencing: Ultrasensitive detection of fluorescent bands during electrophoresis. Nucleic Acids Res. 15:4593–4602.

    Article  PubMed  CAS  Google Scholar 

  • Brash, D., Seetharam, S., Kraemer, K. H., Seidman, M. M., and Bredberg, A. (1987). Photoproduct frequency is not the major determinant of UV base substitution hot spots or cold spots in human cells. Proc. Natl. Acad. Sci. USA 84:3782–3786.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D. Y., Swerdlow, H. P., Harke, H. R., Zhang, J. Z., and Dovichi, N. J. (1991). Low-cost, high-sensitivity laser-induced fluorescence detection for DNA sequencing by capillary gel electrophoresis. J. Chromatogr. 559:237–246.

    Article  PubMed  CAS  Google Scholar 

  • Comess, K. M., Burstyn, J. N., Essigmann, J. M., and Lippard, S. J. (1992). Replication inhibition and translesion synthesis on templates containing site-specifically placed cis-diamminedichloroplatinum(II) DNA adducts. Biochemistry 31:3975–3990.

    Article  PubMed  CAS  Google Scholar 

  • Drobetsky, E. A., and Sage, E. (1993). UV-induced G:C to A:T transitions at the aprt locus of Chinese hamster ovary cells cluster at frequently damaged 5′-TCC-3′ sequences. Mutai. Res. 289:131–136.

    Article  CAS  Google Scholar 

  • Gao, S., Drouin, R., and Holmquist, G. P. (1994). DNA repair rates mapped along the human PGK1 gene at nucleotide resolution. Science 263:1438–1440.

    Article  PubMed  CAS  Google Scholar 

  • Goodisman, J., and Dabrowiak, J. C. (1992). Quantitative aspects of DNase I footprinting, in:Advances in DNA Sequence Specific Agents (L.H. Hurley, ed.), JAI Press, Greenwich, CT, pp. 25–50.

    Google Scholar 

  • Gordon, L. K., and Haseltine, W. A. (1982). Quantitation of cyclobutane dimer formation in double and single stranded DNA fragments of defined sequence. Radiat. Res. 89:99–112.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X. C., Quesada, M. A., and Mathies, R. A. (1992). DNA sequencing using capillary array electrophoresis. Anal. Chem. 64:2149–2154.

    Article  PubMed  CAS  Google Scholar 

  • Iwahana, H., Yoshimoto, K., Mizusawa, N., Kudo, E., and Itakura, M. (1994). Multiple fluorescence-based PCR-SSCP analysis. Biotechniques 16:296–305.

    PubMed  CAS  Google Scholar 

  • Karger, A. E., Harris, J. M., and Gesteland, R. F. (1991). Multiwavelength fluorescence detection for DNA sequencing using capillary electrophoresis Nucleic Acids Res. 19:4955–4962.

    Article  PubMed  CAS  Google Scholar 

  • Khrapko, K., Hanekamp, J. S., Thilly, W. G., Belenkii, A., Foret, F., and Karger, B. L. (1994). Constant denaturant capillary electrophoresis (CDCE):A high resolution approach to mutational analysis. Nucleic Acids Res. 22:364–369.

    Article  PubMed  CAS  Google Scholar 

  • Koehler, D. R., Awadallah, S. S., and Glickman, B. W. (1991). Sites of preferential induction of cyclobutane pyrimidine dimers in the nontranscribed strand of lad correspond with sites of UV-induced mutation in Escherichia coli. J. Biol Chem. 266:11766–11773.

    PubMed  CAS  Google Scholar 

  • Kunala, S., and Brash, D. E. (1992). Excision repair at individual bases of the Escherichia coli lad gene: Relation to mutation hot spots and transcription coupling activity. Proc. Natl. Acad. Sci. USA 89:11031–11035.

    Article  PubMed  CAS  Google Scholar 

  • Lippke, J. A., Gordon, L. K., Brash, D. E., and Haseltine, W. A. (1981). Distribution of UV light-induced damage in a defined sequence of human DNA:Detection of alkali-sensitive lesions at pyrimidine nucleoside-cytosine. sequences. Proc. Natl. Acad Sci. USA 78:3388–3392.

    Article  PubMed  CAS  Google Scholar 

  • Murov, S. L. (1973). Handbook of Photochemistry, Dekker, New York.

    Google Scholar 

  • Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1991). In vivo mapping of a DNA adduct at nucleotide resolution: Detection of pyrimidine (6−4) pyrimidine photoproducts by ligation-mediated polymerase chain reaction. Proc. Natl. Acad. Sci. USA 88:1374–1378.

    Article  PubMed  CAS  Google Scholar 

  • Porcher, C., Malinge, M. C., Picat, C., and Grandchamp, B. (1992). A simplified method for determination of specific DNA or RNA copy number using quantitative PCR and an automated DNA sequencer. Biotechniques 13:106–113.

    PubMed  CAS  Google Scholar 

  • Sage, E., Cramb, E., and Glickman, B. W. (1992). The distribution of UV damage in the lad gene of Escherichia coli: Correlation with mutation spectrum. Mutat. Res. 269:285–299.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Segurado, O. G., and Schendel, D. J. (1993). Identification of predominant T-cell receptor rearrangements by temperature-gradient gel electrophoresis and automated DNA sequencing. Electrophoresis 14:747–752.

    Article  PubMed  CAS  Google Scholar 

  • Shoukry, S., Anderson, M. W., and Glickman, B. W. (1991). A new technique for determining the distribution of N7-methyl guanine using an automated DNA sequencer. Carcinogenesis 12:2089–2092.

    Article  PubMed  CAS  Google Scholar 

  • Shoukry, S., Anderson, M. W., and Glickman, B. W. (1993). Use of fluorescently tagged DNA and an automated DNA sequencer for the comparison of the sequence selectivity of SN1 and SN2 alkylating agents. Carcinogenesis 14:155–157.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L. M., Fung, S., Hunkapiller, M. W., Hunkapiller, T. J., and Hood, L. E. (1985). The synthesis of oligonucleotides containing an aliphatic amino group at the 5′ terminus: Synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucleic Acids Res. 13:2399–2412.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R., Heiner, C., Kent, S.B. H., and Hood, L.E. (1986). Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679.

    Article  PubMed  CAS  Google Scholar 

  • Tornaletti, S., and Pfeifer, G. P., (1994). Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science 263:1436–1438.

    Article  PubMed  CAS  Google Scholar 

  • Verpy, E., Biasotto, M., Meo, T., and Tosi, M. (1994). Efficient detection of point mutations on color-coded strands of target DNA. Proc. Natl. Acad. Sci. USA 91:1873–1877.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kotturi, G., Kusser, W.C., Glickman, B.W. (1996). DNA Damage Analysis Using an Automated DNA Sequencer. In: Pfeifer, G.P. (eds) Technologies for Detection of DNA Damage and Mutations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0301-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0301-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0303-7

  • Online ISBN: 978-1-4899-0301-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics