Skip to main content

Abstract

DNA glycosylases, first reported by Lindahl (1974), catalyze the scission of the glycosidic bond releasing damaged or mispaired bases as the first step of the base excision repair pathway (Fig. 12.1) (Dianov and Lindahl, 1994). Removal of damaged bases by a DNA glycosylase is generally associated with a specific type of damage (e.g., uracil-DNA glycosylase excises uracil bases formed by deamination or misincorporation into DNA; Lindahl, 1993). The specificity of DNA glycosylases, however, may also cross over to different types of DNA damage [e.g., AlkA protein, which excises a number of alkylated bases (Table I), also excises formyluracil and hydroxymethyluracil bases formed by oxidation (Bjelland et al., 1994)]. Proteins such as the uracil-DNA glycosylase, the AlkA protein, and the Tag protein leave abasic sites in DNA which are in turn processed by endonucleases cleaving the phosphodiester backbone hydrolytically at these sites (Dianov and Lindahl, 1994; Lloyd and Linn, 1993). In addition to this group of DNA glycosylases, the Fpg, Nth, and MutY proteins of E. coli and the UV endonuclease from bacteriophage T4 have physically associated activities incising DNA at abasic sites via β-elimination mechanisms (AP lyases) (Bailly and Verly, 1987; Gerlt, 1993), and as a consequence processing of these lesions may be slightly different than repair of abasic sites (Lloyd and Linn, 1993). The use of these enzymes in the detection of DNA damage is facilitated by the fact that DNA glycosylases are active in the presence of EDTA and function independent of any complex which may form in vivo. Table I summarizes several properties and damages recognized by DNA glycosylases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asahara, H., Wistort, P. M., Bank, J. F., Bakerian, R. H., and Cunningham, R. P. (1989). Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry 28:4444–4449.

    Article  PubMed  CAS  Google Scholar 

  • Au, K. G., Clark, S., Miller, J. H., and Modrich, P. (1989). Escherichia coli mutY gene encodes an adenine glycosylase active on G-A mispairs. Proc. Natl. Acad. Sci. USA 86:8877–8881.

    Article  PubMed  CAS  Google Scholar 

  • Bailly, V., and Verly, W. G. (1987). Escherichia coli endonuclease III is not an endonuclease but a b-elimination catalyst. Biochem. J. 242:565–572.

    PubMed  CAS  Google Scholar 

  • Bessho, T., Roy, R., Yamamoto, K., Kasai, H., Nishimura, S., Tano, K., and Mitra, S. (1993). Repair of 8-hydroxyguanine in DNA by mammalian N-methylpurine-DNA glycosylase. Proc. Natl. Acad. Sci. USA 90:8901–8904.

    Article  PubMed  CAS  Google Scholar 

  • Bjelland, S., and Seeberg, E. (1987). Purification and characterization of 3-methyladenine-DNA glycosylase I from Escherichia coli. Nucleic Acids Res. 15:2787–2901.

    Article  PubMed  CAS  Google Scholar 

  • Bjelland, S., Bjoras, M., and Seeberg, E. (1993). Excision of 3-methylguanine from alkylated DNA by 3-methyl-adenine DNA glycosylase I of Escherichia coli. Nucleic Acids Res. 21:2045–2049.

    Article  PubMed  CAS  Google Scholar 

  • Bjelland, S., Birkeland, N. K., Benneche, T., Volden, G., and Seeberg, E. (1994). DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli. J. Biol. Chem. 269:30489–30495.

    PubMed  CAS  Google Scholar 

  • Boiteux, S. (1993). Properties and biological functions of the NTH and FPG proteins of Escherichia coli: Two DNA glycosylases that repair oxidative damage in DNA. J. Photochem. Photobiol. B:Biol. 19:87–96.

    Article  CAS  Google Scholar 

  • Boiteux, S., O’Connor, T. R., and Laval, J. (1987). Formamidopyrimidine-DNA glycosylase of Escherichia coli: Cloning and sequencing of the fpg structural gene and overproduction of the protein. EMBO J. 6:3177–3183.

    PubMed  CAS  Google Scholar 

  • Boiteux, S., O’Connor, T. R., Lederer, F., Gouyette, A., and Laval, J. (1990). Homogeneous Fpg protein: A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J. Biol. Chem. 265:3916–3922.

    PubMed  CAS  Google Scholar 

  • Boiteux, S., Gajewski, E., Laval, J., and Dizdaroglu, M. (1992). Substrate specificity of the Escherichia coli Fpg protein: Excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry 31:106–110.

    Article  PubMed  CAS  Google Scholar 

  • Boorstein, R. J., Hilber, T. P., Cadet, J., Cunningham, R. P., and Teebor, G. W. (1989). UV-induced pyrimidine hydrates in DNA are repaired by bacterial and mammalian DNA glycosylase activities. Biochemistry 28:6164–6170.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Breimer, L. H. (1984). Enzymatic excision from γ-irradiated polydeoxyribonucleotide of adenine residues whose imidazole ring has been ruptured. Nucleic Acids Res. 12:6359–6367.

    Article  PubMed  CAS  Google Scholar 

  • Cadet, J., and Weinfeld, M. (1993). Detecting DNA damage. Anal. Chem. 65:675A–682A.

    PubMed  CAS  Google Scholar 

  • Carter, C. A., Habraken, Y., and Ludlum, D.B. (1988). Release of 7-alkylguanines from haloethylnitrosourea treated DNA by E. coli 3-methyladenine-DNA glycosylase II. Biochem. Biophys. Res. Commun. 155:1261–1265.

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti, D., Ibeanu, G.C., Tano, K., and Mitra, S. (1991). Cloning and expression in Escherichia coli of a human cDNA encoding the DNA repair protein N-methylpurine-DNA glycosylase. J. Biol. Chem. 266:15710–15715.

    PubMed  CAS  Google Scholar 

  • Chetsanga, C.J., and Lindahl, T. (1979). Release of 7-methylguanine residues whose imidazole rings have been opened from damaged DNA by a DNA glycosylase from Escherichia coli. Nucleic Acids Res. 6:3673–3683.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, N. D., Kvaal, M., and Seeberg, E. (1984). Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylases I and II. Mol. Gen. Genet. 197:368–372.

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira, R., Auffret van der Kemp, P., Thomas, D., Geiger, A., Nehls, P., and Boiteux, S. (1994). Formamidopyrimidine-DNA glycosylase in the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 22:3760–3764.

    Article  PubMed  Google Scholar 

  • Demple, B., and Harrison, L. (1994). Repair of oxidative damage to DNA:Enzymology and biology. Annu. Rev. Biochem. 63:915–948.

    Article  PubMed  CAS  Google Scholar 

  • Dianov, G., and Lindahl, T. (1994). Reconstitution of the DNA base excision-repair pathway. Curr. Biol. 4:1069–1076.

    Article  PubMed  CAS  Google Scholar 

  • Dizdaroglu, M. (1991). Chemical determination of free radical-induced damage to DNA. Free Radical Biol. Med. 10:225–242.

    Article  CAS  Google Scholar 

  • Dizdaroglu, M., Laval, J., and Boiteux, S. (1993). Substrate specificity of the Escherichia coli endonuclease III:Excision of thymine-and cytosine-derived lesions in DNA produced by radiation-generated free radicals. Biochemistry 32:12105–12111.

    Article  PubMed  CAS  Google Scholar 

  • Dodson, M. L., and Lloyd, R.S. (1989). Structure-function studies of the T4 endonuclease V repair enzyme. Mutat. Res. 218:49–65.

    Article  PubMed  CAS  Google Scholar 

  • Dodson, M. L., Michaels, M. L., and Lloyd, R. S. (1994). Unified catalytic mechanism for DNA glycosylases. J. Biol. Chem. 269:32709–32712.

    PubMed  CAS  Google Scholar 

  • Dosanjh, M. K., Chenna, A., Kim, E., Fraenkel-Conrat, H., Samson, L., and Singer, B. (1994). All four known cyclic adducts formed in DNA by the vinyl chloride metabolite chloracetaldehyde are released by a human DNA glycosylase. Proc. Natl. Acad. Sci. USA 91:1024–1028.

    Article  PubMed  CAS  Google Scholar 

  • Floyd, R. A., West, M.S., Eneff, K.L., and Schneider, J.E. (1989). Methylene blue plus light mediates 8-hydroxy-guanine formation in DNA. Arch. Biochem. Biophys. 273:106–111.

    Article  PubMed  CAS  Google Scholar 

  • Ganguly, T., Weems, K. M., and Duker, N. J. (1989). Ultraviolet-induced thymine hydrates are excised by bacterial and human DNA glycosylase activity. Biochemistry 29:7222–7228.

    Article  Google Scholar 

  • Gerlt, J. A. (1993). Mechanistic principles of enzyme-catalyzed cleavage of phosphodiester bonds, in:Nucleases (Linn, S., Roberts, R. J., and Lloyd, R. S, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1–34.

    Google Scholar 

  • Graves, R. J., Felzenswalb, L, Laval, J., and O’Connor, T. R. (1992). Excision of 5′-terminal deoxyribose phosphate from damaged DNA is catalysed by the Fpg protein of Escherichia coli. J. Biol. Chem. 267:14429–14435.

    PubMed  CAS  Google Scholar 

  • Habraken, Y., Carter, C. A., Sekiguchi, M., and Ludlum, D. B. (1991). Release of N2,3-ethanoguanine from haloethylnitrosourea-treated DNA by Escherichia coli 3-methyladenine DNA glycosylase II. Carcinogenesis 12:1971–1973.

    Article  PubMed  CAS  Google Scholar 

  • Hanawalt, P. C. (1994). Transcription-coupled repair and human disease. Science 266:1957–1958.

    Article  PubMed  CAS  Google Scholar 

  • Hatahet, Z., Purmal, A. A., and Wallace, S. S. (1993). A novel method for site specific introduction of single model oxidative DNA lesions into oligodeoxyribonucleotides. Nucleic Acids Res. 21:1563–1568.

    Article  PubMed  CAS  Google Scholar 

  • Hatahet, Z., Kow, Y W., Purmal, A. A., Cunningham, R. P., and Wallace, S. S. (1994). New substrates for old enzymes. J. Biol Chem. 269:18814–18820.

    PubMed  CAS  Google Scholar 

  • Hegler, J., Bittner, D., Boiteux, S., and Epe, B. (1993). Quantification of oxidative DNA modifications in mitochondria. Carcinogenesis 14:2309–2312.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, J., Clark, S., and Modrich, P. (1990). Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc. Natl. Acad. Sci. USA 87:5837–5841.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, I.-C, Yang, Q., Kahng, M. W., and Xu, J.-F. (1994). Detection of DNA point mutations with DNA mismatch repair enzymes. Carcinogenesis 15:1657–1662.

    Article  PubMed  CAS  Google Scholar 

  • Kow, Y W., and Wallace, S. S. (1987). Mechanism of action of Escherichia coli endonuclease III. Biochemistry 26:8200–8206.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, T. (1974). An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl. Acad. Sci. USA 71:3649–3653.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature 362:709–715.

    Article  PubMed  CAS  Google Scholar 

  • Lion, T., and Haas, O. A. (1990). Nonradioactive labeling of probe with digoxigenin by polymerase chain reaction. Anal. Biochem. 188:335–337.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, R. S., and Linn, S. (1993). Nucleases involved in DNA repair, in:Nucleuses. (Linn, S., Roberts, R. J., and Lloyd, R. S., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 263–316.

    Google Scholar 

  • Lu, A.-L., and Hsu, I.-C. (1992). Detection of single DNA base mutations with mismatch repair enzymes. Genomics 14:249–255.

    Article  PubMed  CAS  Google Scholar 

  • Matijasevic, Z., Sekiguchi, M., and Ludlum, D. B. (1992). Release of N2,3-ethenoguanine from chloroacetaldehyde-treated DNA by Escherichia coli 3-methyladenine DNA glycosylase II. Proc. Natl. Acad. Sci. USA 89:9331–9334.

    Article  PubMed  CAS  Google Scholar 

  • Mattes, W. B., Lee, C.-S., Laval, J., and O’Connor, T. R. (1996). Excision of DNA adducts of nitrogen mustards by bacterial and mammalian 3-methyladenine-DNA glycosylases. Carcinogenesis, in press..

    Google Scholar 

  • Maxam, A. M., and Gilbert, W. (1980). Sequencing end-labeled DNA with base-specific chemical cleavage. Methods Enzymol 65:499–559.

    Article  PubMed  CAS  Google Scholar 

  • Müller, E., Boiteux, S., Cunningham, R. P., and Epe, B. (1990). Enzymatic recognition of DNA modifications induced by singlet oxygen and photosensitizers. Nucleic Acids Res. 18:5969–5973.

    Article  PubMed  Google Scholar 

  • Neddermann, P., and Jiricny, J. (1993). Purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells. J. Biol. Chem. 268:21218–21224.

    PubMed  CAS  Google Scholar 

  • O’Connor, T. (1993). Purification and characterisation of human 3-methyladenine-DNA glycosylase. Nucleic Acids Res. 21:5561–5569.

    Article  PubMed  Google Scholar 

  • O’Connor, T. R., and Laval, J. (1989). Physical association of the formamidopyrimidine DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites. Proc. Natl. Acad. Sci. USA 86:5222–5226.

    Article  PubMed  Google Scholar 

  • O’Connor, T. R., and Laval, F. (1990). Isolation and structure of a cDNA expressing a mammalian 3-methyladenine-DNA glycosylase. EMBO J. 9:3337–3342.

    PubMed  Google Scholar 

  • O’Connor, T. R., and Laval, J. (1991). Human cDNA expressing a functional DNA glycosylase excising 3-methyladenine and 7-methylguanine. Biochem. Biophys. Res. Commun. 176:1170–1177.

    Article  PubMed  Google Scholar 

  • O’Connor, T. R., Boiteux, S., and Laval, J. (1988). Ring-opened 7-methylguanine residues are a block to in vitro DNA synthesis. Nucleic Acids Res. 16:5879–5894.

    Article  PubMed  Google Scholar 

  • O’Connor, T. R., Graves, R. J., de Murcia, G., Castaing, B., and Laval, J. (1993). Fpg protein of Escherichia coli is a zinc finger protein whose cysteine residues have a structural and/or functional role. J. Biol. Chem. 268:9063–9070.

    PubMed  Google Scholar 

  • Pfeifer, G. P., Drouin, R., and Holmquist, G.P. (1993). Detection of DNA adducts at the DNA sequence level by ligation-mediated PCR. Mutat. Res. 288:39–46.

    Article  PubMed  CAS  Google Scholar 

  • Pierre, J., and Laval, J. (1980). Micrococcus luteus endonucleases for apurinic/apyrimidinic sites in deoxyribonucleic acid. 2. Further studies on the substrate specificity and mechanism of action. Biochemistry 19:5024–5029.

    Article  PubMed  CAS  Google Scholar 

  • Sakumi, K., and Sekiguchi, M. (1990). Structures and functions of DNA glycosylases. Mutat. Res. 236:161–172.

    Article  PubMed  CAS  Google Scholar 

  • Sakumi, K., Nakabeppu, Y., Yamamoto, Y, Kawabata, S., Iwanga, I., and Sekiguchi, M. (1986). Purification and structure of 3-methyladenine-DNA glycosylase I of Escherichia coli. J. Biol. Chem. 261:15761–15766.

    PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Samson, L., Derfler, B., Boosalis, M., and Call, K. (1991). Cloning and characterization of a 3-methyladenine DNA glycosylase cDNA from human cells whose gene maps to chromosome 16. Proc. Natl. Acad. Sci. USA 88:9127–9131.

    Article  PubMed  CAS  Google Scholar 

  • Saparbaev, M., and Laval, J. (1994). Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc. Natl. Acad. Sci. USA 91:5873–5877.

    Article  PubMed  CAS  Google Scholar 

  • Schowalter, D. B., and Sommer, S. S. (1989). The generation of radiolabeled DNA and RNA probes with polymerase chain reaction. Anal. Biochem. 177:90–94.

    Article  PubMed  CAS  Google Scholar 

  • Simha, D., Palejwala, V. A., and Humayun, M. Z. (1991). Mechanisms of mutagenesis by exocyclic DNA adducts. Construction and in vitro template characteristics of an oligonucleotide bearing a single site-specific ethenocytosine. Biochemistry 30:8727–8735.

    Article  PubMed  CAS  Google Scholar 

  • Tsai-Wu, J. J., Liu, H. K., and Lu, A.-L. (1992). Escherichia coli MutY protein has both N-glycosylase and apurinic/ apyrimidinic endonuclease activities on A-C and A-G mispairs. Proc. Natl. Acad. Sci. USA 89:8779–8783.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Sitaram, A., and Scicchitano, D. A. (1995). 3-Methyladenine and 7-methylguanine exhibit no preferential removal from the transcribed strand of the dihydrofolate reductase gene in Chinese hamster ovary B11 cells. Biochemistry 34:1798–1804.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, Y C., Chang, D. Y, Masin, J., and Lu, A.-L. (1991). Two nicking enzyme systems specific for mismatch-containing DNA in nuclear extracts from human cells. J. Biol. Chem. 266:6480–6484.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Connor, T.R. (1996). The Use of DNA Glycosylases to Detect DNA Damage. In: Pfeifer, G.P. (eds) Technologies for Detection of DNA Damage and Mutations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0301-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0301-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0303-7

  • Online ISBN: 978-1-4899-0301-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics