Skip to main content

Smoothing Techniques for Macromolecular Global Optimization

  • Chapter
Nonlinear Optimization and Applications

Abstract

We study global optimization problems that arise in macromolecular modeling, and the solution of these problems via continuation and smoothing. Our results unify and extend the theory associated with the use of the Gaussian transform for smoothing. We show that the Gaussian transform can be viewed as a special case of a generalized transform and that these generalized transforms share many of the properties of the Gaussian transform. We also show that the smoothing behavior of the generalized transform can be studied in terms of the Fourier transform and that these results indicate that the Gaussian transform has superior smoothing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.T. Brünger and M. Nilges, “Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR-spectroscopy”. Q. Rev. Biophys., 26:49–125, 1993.

    Article  Google Scholar 

  2. T.F. Coleman, D. Shalloway, and Z. Wu, “Isotropic effective energy simulated annealing searches for low energy molecular cluster states”. Comp. Optim. Applications, 2:145–170, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  3. T.F. Coleman, D. Shalloway, and Z. Wu, “A parallel build-up algorithm for global energy minimizations of molecular clusters using effective energy simulated annealing”. J. Global Optim., 4:171–185, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  4. G.M. Crippen and T. F. Havel, “Distance Geometry and Molecular Conformation”. John Wiley & Sons, 1988.

    Google Scholar 

  5. P. J. Davis and P. Rabinowitz, “Methods of Numerical Integration”. Academic Press, second edition, 1984.

    Google Scholar 

  6. Y.M. Ermoliev, V.I. Norkin, and R.J.-B. Wets, “The minimization of discontinuous functions: Mollifier subgradients”. SIAM J. Control Optim., 33:149–167, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  7. G.B. Folland, “Real Analysis”. John Wiley & Sons, 1984.

    Google Scholar 

  8. W. Gautschi, “Algorithm 726: ORTHOPOL — A package of routines for generating orthogonal polynomials and Gauss-type quadrature rules”. ACM Trans. Math. Software, 20:21–62, 1994.

    Article  MATH  Google Scholar 

  9. A. Griewank, “Generalized descent for global optimization”. J. Optim. Theory Appl., 34:11–39, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  10. R.W. Hasse and J.P. Schiffer, “The structure of the cylindrically confined coulomb lattice”. Ann. Physics, 203:419–448, 1990.

    Article  Google Scholar 

  11. T.F. Havel, “An evaluation of computational strategies for use in the determination of protein structure from distance geometry constraints obtained by nuclear magnetic resonance”. Prog. Biophys. Mol. Biol., 56:43–78, 1991.

    Article  Google Scholar 

  12. V.Y. Katkovnik and O.Y. Kulchitskii, “Convergence of a class of random search algorithms”. Automat. Remote Control, 8:81–87, 1972.

    MathSciNet  Google Scholar 

  13. J. Kostrowicki and L. Piela, “Diffusion equation method of global minimization: Performance for standard functions”. J. Optim. Theory Appl., 69:269–284, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Kostrowicki, L. Piela, B.J. Cherayil, and H.A. Scheraga, “Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms”. J. Phys. Chem., 95:4113–4119, 1991.

    Article  Google Scholar 

  15. J. Kreimer and R.Y. Rubinstein, “Nondifferentiable optimization via smooth approximation: General analytical approach”. Math. Oper. Res., 39:97–119, 1992.

    MathSciNet  MATH  Google Scholar 

  16. I. D. Kuntz, J. F. Thomason, and C. M. Oshiro, “Distance geometry”. In N. J. Oppenheimer and T. L. James, editors, Methods in Enzymology, volume 177, pages 159-204. Academic Press, 1993.

    Google Scholar 

  17. S. Lang, “Real Analysis” Addison-Wesley, second edition, 1983.

    Google Scholar 

  18. J. J. Moré and Z. Wu, “Global continuation for distance geometry problems”. Preprint MCS-P505-0395, Argonne National Laboratory, Argonne, Illinois, 1995.

    Google Scholar 

  19. J. J. More and Z. Wu, “ε-optimal solutions to distance geometry problems via global continuation”. Preprint MCS-P520-0595, Argonne National Laboratory, Argonne, Illinois, 1995.

    Google Scholar 

  20. L. Piela, J. Kostrowicki, and H.A. Scheraga, “The multiple-minima problem in the conformational analysis of molecules: Deformation of the protein energy hypersurface by the diffusion equation method”. J. Phys. Chem., 93:3339–3346, 1989.

    Article  Google Scholar 

  21. R. Rafac, J.P. Schiffer, J.S. Hangst, D.H.E. Dubin, and D.J. Wales, “Stable configurations of confined cold ionic systems”. Proc. Natl. Acad. Sci. U.S.A., 88:483–486, 1991.

    Article  Google Scholar 

  22. R. Y. Rubinstein, “Simulation and the Monte Carlo Method”. John Wiley & Sons, 1981.

    Google Scholar 

  23. R.Y. Rubinstein, “Smoothed functionals in stochastic optimization”. Math. Oper. Res., 8:26–33, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Y. Rubinstein, “Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks”. John Wiley & Sons, 1986.

    Google Scholar 

  25. J.P. Schiffer, “Phase transitions in anisotropically confined ionic crystals”. Phys. Rev. Lett., 70:818–821, 1993.

    Article  Google Scholar 

  26. D. Shalloway, “Application of the renormalization group to deterministic global minimization of molecular conformation energy functions”. J. Global Optim., 2:281–311, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Shalloway, “Packet annealing: A deterministic method for global minimization, application to molecular conformation”. In C. Floudas and P. Pardalos, editors, Recent Advances in Global Optimization, pages 433-477. Princeton University Press, 1992.

    Google Scholar 

  28. N.M. Steen, G.D. Byrne, and E.M. Gelbard, “Gaussian quadratures for the integrals \(\int_0^\infty {\exp ( - x^2 )f(x)dx\,and\,\int_0^b {\exp ( - x^2 )} f(x)dx} \)”. Math. Comp., 23:661–674, 1969.

    MathSciNet  MATH  Google Scholar 

  29. J. E. Straub, “Optimization techniques with applications to proteins”. Preprint, Boston University, Department of Chemistry, Boston, Massachusetts, 1994.

    Google Scholar 

  30. A. H. Stroud and D. Secrest, “Gaussian Quadrature Formulas”. Prentice-Hall, Inc., 1966.

    Google Scholar 

  31. Z. Wu, “The effective energy transformation scheme as a special continuation approach to global optimization with application to molecular conformation”. Preprint MCS-P442-0694, Argonne National Laboratory, Argonne, Illinois, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moré, J.J., Zhijun, W. (1996). Smoothing Techniques for Macromolecular Global Optimization. In: Di Pillo, G., Giannessi, F. (eds) Nonlinear Optimization and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0289-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0289-4_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0291-7

  • Online ISBN: 978-1-4899-0289-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics