Microsatellite Heterozygosity: Functional Constraints on the Development and Use of Comprehensive Genomic Maps for Livestock

  • Craig W. Beattie
Part of the Stadler Genetics Symposia Series book series (SGSS)


Microsatellites (ms) are abundant, multi-allelic, repetitive elements uniformly distributed throughout the genome of numerous species, including man (Litt and Luty, 1989; Weber and May, 1989). As ms are inherited codominantly, they have the potential to replace serum protein and red blood cell antigen polymorphisms for parental identification in livestock (Kappes et al., 1994; Glowatzki-Mullis et al., 1995; Usha et al., 1995). They currently provide the markers required to rapidly produce the linkage maps essential to identifying and assigning segregating loci of interest in cattle (Bishop et al., 1994), swine (Rohrer et al., 1994) and sheep (Crawford et al., 1995) including blood group antigens (Kappes et al., 1994).


Polymorphism Information Content Grizzly Bear Pilot Whale Random Oligonucleotide Minisatellite Locus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amos, B., Schlotterer, C., and Tautz, D., 1993, Social structure of pilot whales revealed by analytical DNA profiling, Science 260: 670.PubMedCrossRefGoogle Scholar
  2. Balazs, I., Neuweiler, J., Gunn, P., Kidd, K.K., Kuhl, J., and Mingjun, L, 1992, Human population genetic studies using hypervariable loci. I. Analysis of Assamese, Australian, Cambodian, Caucasian, Chinese and Melanesian populations, Genetics 131: 191.PubMedGoogle Scholar
  3. Beattie, C.W., 1994, Livestock genome maps, T.I.G. 10: 334.Google Scholar
  4. Bishop, M.D., Kappes, S.M., Keele, J.W., Stone, R.T., Sunden, S.L.F., Hawkins, G.A., Solinas Tolda, S., Fries, R., Grosz, M.D., Yoo, J-Y., and Beattie, C.W., 1994, A genetic linkage map for cattle, Genetics 136: 619.PubMedGoogle Scholar
  5. Botstein, D., White, R.L, Skolnick, M., and Davies, R.W., 1980, Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet. 32: 314.PubMedGoogle Scholar
  6. Brini, A.T., Lee, G.M., and Kinet, J-P., 1993, Involvement of Alu sequences in the cell-specific regulation of transcription of the gamma chain of the Fc and T-cell receptors, J. Biol. Chem. 268: 1355.PubMedGoogle Scholar
  7. Buchanan, F.C., Adams, L.J., Littlejohn, R.P., Maddox, J.F., and Crawford, A.M., 1994, Determination of evolutionary relationships among sheep breeds using microsatellites, Genomics 22: 397.PubMedCrossRefGoogle Scholar
  8. Buitkamp, J., Zischler, H., Epplen, J.T., and Geldermann, H., 1991, DNA fingerprinting in cattle using oligonucleotide probes, Anim. Genet. 22: 137.PubMedCrossRefGoogle Scholar
  9. Capy, P., and Brookfield, J.F.Y., 1991, Estimation of relatedness in natural populations using highly polymorphic genetic markers, Genet. Sel. Evol. 23: 391.CrossRefGoogle Scholar
  10. Cepica, S., Wolf. J., Hojny, J., Vackova, I., and Schroffel, J. Jr., 1995, Relations between genetic distance of parental pig breeds and heterozygosity of their F1 crosses measured by genetic markers, Anim. Genet. 26: 135.PubMedCrossRefGoogle Scholar
  11. Copeland, N.G., Jenkins, N.A., Gilbert, D.J., Eppig, J.T., Maltais, LJ., Miller, J.C., Dietrich, W.F., Weaver, A., Lincoln, S.E., Steen, R.G., Stein, LD., Nadeau, J.H., and Lander, E.S., 1993, A genetic linkage map of the mouse: Current applications and future prospects, Science 262: 57.PubMedCrossRefGoogle Scholar
  12. Craighead, L, Paetkau, D., Reynolds, H.V., Vyse, E.R., and Strobeck, C., 1995, Microsatellite analysis of paternity and reproduction in arctic grizzly bears, J. Hered. 86: 255.PubMedGoogle Scholar
  13. Crawford, A.M., Dodds, K.G., Ede, A.J., Pierson, C.A., Montgomery, G.W., Garmonsway, H.G., Beattie, A.E., Davies, K., Maddox, J.F., Kappes, S.W., Stone, R.T., Nguyen, T.C., Penty, J.M., Lord, A.E., Broom, J.E., Buitkamp, J., Schwaiger, W., Epplen, J.T., Matthew, P., Matthews, M.E., Hulme, D.J., Beh, K.J., McGraw, R.A., and Beattie, C.W., 1995, An autosomal genetic linkage map of the sheep genome, Genetics 140: 703.PubMedGoogle Scholar
  14. Edwards, A., Civitello, A., Hammond, H.A., and Caskey, C.T., 1991, DNA typing and genetic mapping with trimeric and tetrameric tandem repeats, Am. J. Hum. Genet. 49: 746.PubMedGoogle Scholar
  15. Ellegren, H., Chowdhary, B.P., Johansson, M., Marklund, L., Fedholm, M., Gustaysson, I., Andersson, L, 1994, A primary linkage map of the porcine genome reveals a low rate of genetic recombination, Genetics 137: 1089.PubMedGoogle Scholar
  16. Ellegren, H., Hartman, G., Johansson, M., and Andersson, L., 1993, Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers, Proc. Natl. Acad. Sci. USA 90: 8150.PubMedCrossRefGoogle Scholar
  17. Ellegren, H., Primmer, C.R., and Sheldon, B.C., 1995, Microsatellite `evolution’: directionality or bias, Nature Genet. 11: 360.PubMedCrossRefGoogle Scholar
  18. FitzSimmons, N.N., Moritz, C., and Moore, S.S., 1995, conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution, Mol. Biol. Evol. 12: 432.Google Scholar
  19. Forbes, S.H., Hogg, J.T., Buchanan, F.C., Crawford, A.M. and Allendorf, F.W., 1995, Microsatellite evolution in congeneric mammals: Domestic and Bighorn sheep, Mol. Biol. Evol. 12: 1106.PubMedGoogle Scholar
  20. Fredholm, M., Wintero, A.K., Christensen, K., Kristensen, B., Nielsen, P.B., Davies, W., and Archibald, A., 1993, Characterization of 24 porcine (dA-dC)„ - (dTdG)„ microsatellites: Genotyping of unrelated animals from four breeds and linkage studies, Mamm. Genorne 4: 187.CrossRefGoogle Scholar
  21. Georges, M., Lequarre, A.S., Castelli, M., Hanset, R., Vassert, G.G., 1988, DNA fingerprinting in domestic animals using four different minisatellite probes, Cytogenet. Cell Genet. 47: 127.PubMedCrossRefGoogle Scholar
  22. Georges, M., Lathrop, M., Hilbert, P., Marcotte, A., Schwers, A., Swillens, S., Vassart, G., and Hanset, R., 1990, On the use of DNA fingerprints for linkage studies in cattle, Genomics 6: 461.PubMedCrossRefGoogle Scholar
  23. Gertsch, P., Pamilo, P., and Varvio, S.-L, 1995, Microsatellites reveal high genetic diversity within colonies of Camponotus ants, Mol. Ecol. 4: 257.PubMedCrossRefGoogle Scholar
  24. Glowatzki-Mullis, M-L, Gaillard, C., Wigger, G., and Fries, R., 1995, Microsatellitebased parentage control in cattle, Anim. Genet. 26: 7.PubMedCrossRefGoogle Scholar
  25. Goldstein, D.B., Ruiz Linares, A., Cavalli-Sforza, LL, and Feldman, M.W., 1995, Genetic absolute dating based on microsatellites and the origin of modern humans, Proc. Natl. Acad. Sci. USA 92: 6723.PubMedCrossRefGoogle Scholar
  26. Gray, J.C., and Jeffreys, A.J., 1991, evolutionary transience of hypervariable minisatellites in man and primates, Proc. R. Soc. Lond. (Biol] 243: 241.Google Scholar
  27. Gwakisa, P.S., Kemp, S.J., and Teale, A.J., 1994, Characterization of Zebu cattle breeds in Tanzania using random amplified polymorphic DNA markers, Anim. Genet. 25: 89.PubMedGoogle Scholar
  28. Haberfield, A., Kalay, D., Weisberger, P., Gal, O., and Hilliel, J., 1993, Application of multilocus molecular markers in cattle breeding. 1. Minisatallites and microsatellites, J. Dairy Sci. 76: 645.CrossRefGoogle Scholar
  29. Hearne, C.M., Gosh, S., and Todd, J.A., 1992, Microsatellites for linkage analysis of genetic traits, T.I.G. 8: 288.Google Scholar
  30. Iwasaki, H., Stewart, P.W., Dilley, W.G., Holt, M.S., Steinbrueck, T.D., Wells, S.A., and Donis-Keller, H., 1992, A minisatellite and a microsatellite polymorphism within 1.5 kb at the human muscle glycogen phosphorylase (PYGM) locus can be amplified by PCR and can have combined informativeness of PIC 0.95, Genomics 13: 7.PubMedCrossRefGoogle Scholar
  31. Jeffreys, A.J., Macleod, A., Tamaki, K., Neil, D.L., and Mossekton, D.G., 1991, Minisatellite repeat coding as a digital approach to DNA typing, Nature 354: 204.PubMedCrossRefGoogle Scholar
  32. Jeffreys, A.J., Wilson, V., and Thein, S.L., 1985, Hypervariable minisatellite regions in the human DNA, Nature 314: 67.PubMedCrossRefGoogle Scholar
  33. Jurka, J., Zietiewicz, E., and Labuda, D., 1995, Ubiquitous mammalian-wide interspersed repeats (MIRS) are molecular fossils from the Mesozoic era, N.A.R. 23: 170.CrossRefGoogle Scholar
  34. Kappes, S.M., Bishop, M.D., Keele, J.W., Penedo, M.C.T., Hines, H.C., Grosz, M.D., Hawkins, G.A., Stone, RT., Sunden, S.LF., and Beattie, C.W., 1994, Linkage of the bovine erythrocyte antigen loci B, C, L, S, Z, R’ and T’ and the serum protein loci post-transferrin 2(PTF2), vitamin D binding protein(GC) and albumin(ALB) to DNA microsatellite markers, Anim. Genet. 25: 133.PubMedCrossRefGoogle Scholar
  35. Kashi, Y., Nave, A., Darvasi, A., Gruenbaum, Y., Soller, M., and Beckmann, J.S., 1994, How is it that microsatellites and random oligonucleotides uncover DNA fingerprint patterns, Mamm. Genome 5: 525.PubMedCrossRefGoogle Scholar
  36. Kemp, S.J., Brezinsky, L, and Teale, A.J., 1993, A panel of bovine, ovine and caprine polymorphic microsatellites, Anim. Genet 24: 363.PubMedCrossRefGoogle Scholar
  37. Kemp, S.J., Hishida, O., Wambagu, J., Rink, A., Longeri, M.L, Ma, M.Z., Da, Y., Lewin, H.A., Barendse, W., Teale, A.J., 1995, A panel of polymorphic bovine, ovine and caprine microsatellite markers, Anim. Genet 26: 299.PubMedCrossRefGoogle Scholar
  38. Kemp, S.J., and Teale, A.J., 1994, Randomly primed PCR amplification of pooled DNA reveals polymorphism in a ruminant repetitive DNA sequence which differentiates Bos indicus and B. Taurus, Anim. Genet. 25: 83.PubMedGoogle Scholar
  39. Lewin, R., 1989, Limits to DNA fingerprinting, Science 243: 1549.PubMedCrossRefGoogle Scholar
  40. Li, M.D., and Enfield, F.D., 1989, A characterization of Chinese breeds of swine using cluster analysis, J. Anim. Breed. Genet. 106: 379.CrossRefGoogle Scholar
  41. Litt, M., and Luty, J.A., 1989, A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene, Am. J. Hum. Genet. 44: 397.PubMedGoogle Scholar
  42. Lynch, M., 1988, Estimation of relatedness by DNA fingerprinting, Mol. Biol. Evol. 5: 584.PubMedGoogle Scholar
  43. Matsutani, A., Janssen, R., Donis-Keller, H., and Permutt, M.A., 1992, A polymorphic (CA)„ repeat element maps the human glucokinase gene (GCK) to chromosome 7p, Genomics 12: 319.PubMedCrossRefGoogle Scholar
  44. McClelland,. M., Mathieu-Daude, F., and Welsh, J., 1995, RNA fingerprinting and differential display using arbitrarily primed PCR, T.I.G. 11: 242.Google Scholar
  45. Meyer, E, Wiegand, P., Rand, S.P., Kulhman, D., Brack, M., and Brinkman, B., 1995, microsatellite polymorphisms reveal phylogenetic relationships in primates, J. Mol. Evol. 41: 10.Google Scholar
  46. Moore, S.S., Evans, D., Byrne, K., Barker, J.S.F., Tan, S.G., Vankan, D., and Hetzel, D.J.S., 1995, A set of polymorphic DNA microsatellites useful in swamp and river buffalo (Bubalus bubalis), Anim. Genet. 26: 355.PubMedCrossRefGoogle Scholar
  47. Moore, S.S., Sargeant, LL, King, T.J., Mattick, J.S., Georges, M., and Hetzel, D.J.S., 1991, The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related specie, Genomics 10: 654.PubMedCrossRefGoogle Scholar
  48. O’Brien, S.J., 1994, Genetic and phylogenetic analysis of endangered species, Annu. Rev. Genet. 28: 467.PubMedCrossRefGoogle Scholar
  49. Onda, M., Kudo, S., Rearden, A., Mattei, M.G., and Fukida, M., 1993, Identification of a precursor genomic segment that provided a sequence unique to the glycophorin B and E genes, Proc. Nad. Acad. Sci. USA 90: 7220.CrossRefGoogle Scholar
  50. Paetkau, D., Calvert, W., Stirling, I., and Strobeck, C., 1995, Microsatellite analysis of population structure in Canadian polar bears, Mol. Ecol. 4: 347.PubMedCrossRefGoogle Scholar
  51. Paetkau, D., and Strobeck, C., 1994, Microsatellite analysis of genetic variation in black bear populations, Mol. EcoL 3: 489.PubMedCrossRefGoogle Scholar
  52. Paszek, A.A., Flickinger, G.H., Fontanesi, L, Beattie, C.W., Rohrer, G.A., Alexander, LJ., and Schook, L.B., 1996b, Determining evolutionary relationships of diverse swine breeds using microsatellites, J. Mol. Evol. (submitted).Google Scholar
  53. Paszek, A.A., Flickinger, G.H., Fontanesi, L, Rohrer, G.A., Alexander, LJ., Beattie, C.W., and Schook, LB., 1996a, Utility of framework microsatellite markers for inter-and intra-genetic selection between diverse swine breeds, Mamm. Genome (submitted).Google Scholar
  54. Pemberton, J.M., Slate, J., Bancroft, D.R., and Barrett, J.A., 1995, Nonamplifying alleles at microsatellite loci: A caution for parentage and population studies, Mol. Ecol. 4: 249.PubMedCrossRefGoogle Scholar
  55. Pepin, L, Amigues, Y., Lepingle, A., Bertherier, J-L, Bensaid, A., and Vaiman, D., 1995, Sequence conservation of microsatellites between Bos taurus (cattle), Capra hircus (goat) and related species. Examples of use in use in parentage testing and phylogeny analysis, Heredity 74: 53.PubMedCrossRefGoogle Scholar
  56. Plante, Y., Schmutz, S.M., Lang, K.D.M., and Moker, J.S., 1992, Detection of leucochimerism in bovine twins by DNA fingerprinting, Anim. Genet. 23: 295.PubMedCrossRefGoogle Scholar
  57. Porter, V. 1983, “Pigs. A Handbook to the Breeds of the World,” Comstock Publishing Associates, Div. Cornell University Press, Ithaca, N.Y.Google Scholar
  58. Richards, R.I., and Sutherland, G.R., 1992, Heritable unstable DNA sequences, Nature Genet. 1: 7.PubMedCrossRefGoogle Scholar
  59. Rohrer, G.A., Alexander, LJ., Keele, J.W., Smith, T.P., and Beattie, C.W., 1994, A microsatellite linkage map of the porcine genome, Genetics 136: 231.PubMedGoogle Scholar
  60. Rubinsztein, D.C., Amos, W., Leggo, J., Goodburn, S., Jain, S., Li, S-H., Margolis, R.L, Ross, C.A., and Ferguson-Smith, M.A., 1995a, Microsatellite evolution-evidence for directionality in rate between species, Nature Genet. 10: 337.PubMedCrossRefGoogle Scholar
  61. Rubinsztein, D.C., Leggo, J., and Amos, W., 1995b, Microsatellites evolve more rapidly in humans than in chimpanzees, Genomics 30: 610.PubMedCrossRefGoogle Scholar
  62. Schlotterer, C., Amos, W., and Tautz, D., 1991, Conservation of polymorphic simple sequence loci in cetacean species, Nature 354: 63.PubMedCrossRefGoogle Scholar
  63. Taylor, E.B., 1995, Genetic variation at minisatellite DNA loci among north pacific populations of steelhead and rainbow trout (Oncorhynchus mykiss), J. Heredity 86: 354.Google Scholar
  64. Teale, A.J., Wambugu, J., Gwakisa, P.S., Stranzinger, G., Bradley, D., and Kemp, S.J., 1995, A polymorphism in randomly amplified DNA that differentiates the Y chromosomes of Bos indicus and Bos taurus, Anim. Genet. 26: 243.PubMedCrossRefGoogle Scholar
  65. Trommelen, G.J., Den Daas, J.M., Vijg, J.H.G., and Uitterlinden, A.G., 1993, DNA profiling of cattle using micro-and minisatellite core probes, Anim. Genet 24: 235.PubMedCrossRefGoogle Scholar
  66. Usha, A.P., Simpson, S.P., and Williams, J.L., 1995, Probability of random sire exclusion using microsatellite markers for parentage verification, Anim. Genet. 26: 156.Google Scholar
  67. Vaiman, D., Imam-Ghali, M., Moazami-Goudarzi, K., Guerin, G., Nocart, M., Grohs, C., Leveziel, H., and Saidi-Mehtar, N., 1994, Conservation of a syntenic group of microsatellite loci between cattle and sheep, Mamm. Genome 5: 310.PubMedCrossRefGoogle Scholar
  68. Vidal, F., Mougneau, F., Gaichenhaus, N., Vaigot, P., Darmon, M., and Cuzin, F., 1993, coordinated post-transcriptional control of gene expression by molecular elements including Alu-like repetitive sequences, Proc. Natl. Acad. Sci. USA 90: 208.Google Scholar
  69. Weber, J.L, 1990, Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms, Genomics 7: 524.PubMedCrossRefGoogle Scholar
  70. Weber, J.L, and May, P.E., 1989, Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction, Am. J. Hum. Genet. 44: 388.PubMedGoogle Scholar
  71. Weising, K., Atkinson, R.G., and Gardner, R.C., 1995, Genomic fingerprinting by microsatellite-primed PCR A critical evaluation, PCR Meth. AppL 4: 249.CrossRefGoogle Scholar
  72. Wetton, J.H., Carter, RE, Parkin, D.T., Walters, D., 1987, Demographic study of a wild house sparrow population by DNA fingerprinting, Nature 327: 147.PubMedCrossRefGoogle Scholar
  73. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., and Tingey, S.V., 1990, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, N.A.R. 18: 6531.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Craig W. Beattie
    • 1
  1. 1.USDA, ARSU.S. Meat Animal Research CenterClay CenterUSA

Personalised recommendations