Skip to main content

Abscisic Acid-Induced Chilling Tolerance in Maize

  • Chapter
Plant Cold Hardiness
  • 333 Accesses

Abstract

Recent trends in agricultural practice of maize (Zea mays L.) in North America have been to plant the crop earlier in the spring to take the advantage of more rainfall and radiation energy, and to avoid the hot and dry periods during pollination and fertilization. In addition, various conservation forms of soil tillage are more in use, resulting in slower soil warming. These practices exacerbate chilling injury during germination and early seedling establishment (Stewart et al., 1990). How chilling (e. g. 10° to 0°C) injures plants (e. g. increased ion leakage, leaf necrosis and seedling death), and how plants tolerate the stress are still poorly understood. It is essential to investigate the physiological and biochemical mechanisms underling chilling tolerance before one can apply the technology of genetic engineering attempting to improve the chilling tolerance of maize plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bush DS, Biswas AK, Jones RL (1989) Gibberellic-acid-stimulated Ca2+ accumulation in endoplasmic reticulum of barley aleurone: Ca2+ transport and steady-state levels. Planta 178: 411–420

    Article  CAS  Google Scholar 

  • Chen HH, Li PH, Brenner ML (1983) Involvement of abscisic acid in potato cold acclimation. Plant Physiol 71: 362–365

    Article  PubMed  CAS  Google Scholar 

  • Chen HH, Gusta VL (1983) Abscisic acid induced freezing tolerance in cultured plant cells. Plant Physiol 73: 71–75

    Article  PubMed  CAS  Google Scholar 

  • Chu B, Xin ZG, Li PH, Carter JV (1992) Depolymerization of cortical microtubules is not a primary cause of chilling injury in corn suspension cultured cells. Plant, Cell and Envrion. 15: 307–321

    Article  Google Scholar 

  • Curvetto NR, Delmastro SE, Aguero MS (1988) An abscisic acid binding protein from abaxial epidermis of Vicia faba isolated by affinity chromatographs. Cyton 48: 7–11

    CAS  Google Scholar 

  • Daie J, Campbell WF (1981) Response of tomato plants to stressful temperature increase in abscisic acid concentration. Plant Physiol 67: 26–29

    Article  PubMed  CAS  Google Scholar 

  • Duncan DR, Widholm JM(1987) Proline accumulatin and its impliction in cold tolerance of regenerable maize callus. Plant Physiol 83: 703–708

    Article  PubMed  CAS  Google Scholar 

  • Eamus D (1987) Stomatal behavior and leaf water potential of chilled and water-stessed Solanum melongena as influenced by growth history. Plant Cell Envirn. 10: 649–654

    Article  Google Scholar 

  • Flores A, Grau A, Laurich F, Dörffling K (1988) Effect of new terpenoid analogues of abscisic acid on chilling and freezing tolerance. J. Plant Physiol 132: 362–369

    Article  CAS  Google Scholar 

  • Franceschi VR, Li X, Zhang D, Okita TW (1993) Calsequestin-like calcium-binding protein is expressed in calcium-accumulating cells of Pistia stratiotes. Proc. Nat. Acad. Sci., USA 90: 6986–6990

    Article  CAS  Google Scholar 

  • Hepler PK, Wayne RO (1985) Calcium and plant development. Ann. Rev. Plant Physiol 36: 397–439

    Article  CAS  Google Scholar 

  • Hocking TJ, Clapham J, Cattell KJ (1978) High affinity binding to subcellular fractions from leaves of Vicia faba. Planta 138: 303–304

    Article  CAS  Google Scholar 

  • Hornberg C, Weiler EM (1987) High afinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310: 321–324

    Article  Google Scholar 

  • Horsch RB, King J, Jones GE (1980) Measurement of cultured plant cell growth on filter paper discs. Can. J. Bot. 58: 2402–2406

    Article  Google Scholar 

  • Johannes E, Brosnan JM, Sanders D (1991) Calcium channels and signal transduction in plant cells. BioEssays 13:331–336

    Article  Google Scholar 

  • Kawata K, Wheaton TA, Purvis AC, Grierson W (1979) Levels of growth regulators and reducing sugars of “Mash” grapefruit peel as related to seasonal resistance to chilling injury. Hort Science 14: 446

    Google Scholar 

  • Lee TM, Lur HS, Chu C (1995) Abscisic acid and putrescine accumulation in chilling-tolerant rice cultivars. Crop Sci. 35: 502–508

    Article  CAS  Google Scholar 

  • Li PH (1994) Maize chilling tolerance induction, In: K Dörffling, B. Brettschneider, H Tautau, K Pithan, eds. Crop Adaptation To Cool Climates, ECSP-EEC-EAEC, Brussels, Belgium, pp 579–594

    Google Scholar 

  • Markhart AH (1984) Amelioration of chilling-induced water stress by abscisic acid-induced changes in root hydraulic conductance. Plant Physiol. 74: 81–83

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K (1992) Induction of cold stability of microtubules in cultured tabacco cells. Plant Physiol. 100: 740–748

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Saton N, Takahashi N, Hamazaki Y (1982) Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling resistant plants. Plant, Cell Physiol 23: 1071–1079

    CAS  Google Scholar 

  • Murata N, Ishizak-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in chilling sensitivity of plants. Nature 356: 710–713

    Article  CAS  Google Scholar 

  • Pooviah BW, Reddy ASN (1987) Calcium messenger system in plants. CRC Critical Rev. Plant Sci. 6: 47–103

    Article  Google Scholar 

  • Rikin A, Richmond AE (1976) Amelioration of chilling injury in cucumber seedlings by abscisic acid. Physiol. Plant 38: 95–97

    Article  CAS  Google Scholar 

  • Rikin A, Atsmon D, Gitler C (1979) Chilling injury in cotton (Gossypium hirsutum L.): Prevention by abscisic acid. Plant, Cell Physiol 20: 1537–1546

    CAS  Google Scholar 

  • Rikin A, Atsmon D, Gitler C (1983) Quantitation of chill-induced release of a tubulin-like factor and its prevention by abscisic acid in Gossypium hirsutum L. Plant Physiol 71: 747–748

    Article  PubMed  CAS  Google Scholar 

  • Slovik S, Baier M, Hartung W (1992a) Compartmental distribution of abscisic acid in intact leaves I. Mathematical formulation. Planta 187:14–25

    Article  CAS  Google Scholar 

  • Slovik S, Baier M. Hartung W (1992b) Compartmental distribution of abscisic acid in intact leaves. III. Analysis of the stress-signal chain. Planta 187: 37–47

    Article  CAS  Google Scholar 

  • Stewart CR, Martin BA, Reding L, Cerwick S (1990) Seedling growth, mitochondrial characteristics, alternative respiratory capacity of corn genotypes differing in cold tolerance. Plant Physiol 92:761–766

    Article  PubMed  CAS  Google Scholar 

  • Tao DL, Li PH, Carter JV (1983) The role of cell wall in freezing tolerance of cultured potato cells and their protoplasts. Physiol. Plant 58: 527–532

    Article  Google Scholar 

  • Towill LE, Mazur P (1975) Studies on the reduction of 2,3,5-triphenyl-tetrazolium chloride as a viability assay for plant tissue cultures. Can. J. Bot. 53: 1097–1102

    Article  Google Scholar 

  • Tseng MJ, Li PH (1984) Mefluidide protection of severely chilled corn plants. Plant Physiol 75: 249–251

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Hasenstein KH (1993) Immunological evidence for ABA receptors in corn roots. Plant Physiol 102: S62

    Google Scholar 

  • Wang CY (1991) Effect of abscisic acid on chilling injury of zucchini squash. J. Plant Growth Regulation 10: 101–105

    Article  CAS  Google Scholar 

  • Xin ZG, Li PH (1992) Abscisic acid-induced chilling tolerance in maize suspension-cultured cells. Plant Physiol 99:707–711

    Article  PubMed  CAS  Google Scholar 

  • Xin ZG, Li PH (1993) Alteration of gene expression associated with abscisic acid-induced chilling tolerance in maize suspension-cultured cells. Plant Physiol 101: 277–284

    PubMed  CAS  Google Scholar 

  • Yacoob RK, Filion WG (1987) The effects of cold-temperature stress on gene expression in maize. Biochem. Cell Biol. 65: 112–119

    Article  CAS  Google Scholar 

  • Zhang CL, Li PH, Brenner ML (1986) Relationship between mufluidide treatment and abscisic acid metabolism in chilled corn leaves. Plant Physiol 81: 699–701

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, P.H., Chen, WP., Jian, Lc., Xin, Z. (1997). Abscisic Acid-Induced Chilling Tolerance in Maize. In: Li, P.H., Chen, T.H.H. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0277-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0277-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0279-5

  • Online ISBN: 978-1-4899-0277-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics