Skip to main content

Protection of Thylakoid Membranes from Freeze-Thaw Damage by Proteins

  • Chapter
  • 336 Accesses

Abstract

The degree of frost hardiness differs vastly between different plant species, from around −1.5°C in tender plants such as tobacco (Hincha et al., 1996b) to the temperature of liquid nitrogen (−196°C) in some extremely hardy trees and shrubs. In addition, most plants from temperate climates follow an annual cycle of hardening and dehardening, with the maximum frost hardiness in the winter and the minimum during summer. In herbaceous plants, hardening/dehardening is triggered by growth temperature. Hardening occurs under low, non-freezing temperatures, usually in the range between 10 and 0°C (cold acclimation) over several days to weeks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakaltcheva I, Schmitt JM, Hincha DK (1992) Time and temperature dependent solute loading of isolated thy-lakoids during freezing. Cryobiology 29: 607–615

    Article  CAS  Google Scholar 

  • Block MA, Dorne A-J, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J. Biol. Chem. 258: 13281–13286

    PubMed  CAS  Google Scholar 

  • Dwek RA, Edge CJ, Harvey DJ, Wormald MR (1993) Analysis of glycoprotein-associated oligosaccharides. Annu. Rev. Biochem. 62: 65–100

    Article  PubMed  CAS  Google Scholar 

  • Etzler ME (1985) Plant lectins: molecular and biological aspects. Annu. Rev. Plant Physiol. 36: 209–234

    Article  CAS  Google Scholar 

  • Grafflage S, Krause GH (1986) Simulation of in situ freezing damage of the photosynthetic apparatus by freezing in vitro of thylakoids suspended in complex media. Planta 168: 67–76

    Article  CAS  Google Scholar 

  • Grant CWM, Peters MW (1984) Lectin-membrane interactions-information from model systems. Biochim. Biophys. Acta 779: 403–422

    Article  PubMed  CAS  Google Scholar 

  • Griffith OH, Jost PC (1976) Lipid spin labeles in biological membranes. In: Berliner L J (ed) Spin labelling: Theory and applications. Academic Press, New York, pp 454–519

    Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 187–223

    Article  CAS  Google Scholar 

  • Guy CL, Niemi KJ, Brambl R (1985) Altered gene expression during cold acclimation of spinach. Proc. Natl. Acad. Sci. USA 82: 3673–3677

    Article  PubMed  CAS  Google Scholar 

  • Haehnel W (1986) Plastocyanin. In: Staehelin L A, Arntzen C J (ed) Encyclopedia of plant physiology, New Series Vol 19. Springer, Berlin, pp 547–559

    Google Scholar 

  • Haschke H-P, Kaiser G, Martinoia E, Hammer U, Teucher T, Dorne AJ, Heinz E (1990) Lipid profiles of leaf tonoplasts from plants with different CO2-fixation mechanisms. Bot. Acta 103: 32–38

    CAS  Google Scholar 

  • Heber U, Kempfle M (1970) Proteine als Schutzstoffe gegenüber dem Gefriertod der Zelle. Z. Naturforsch. 25b: 834–842

    CAS  Google Scholar 

  • Hincha DK (1986) Sucrose influx and mechanical damage by osmotic stress to thylakoid membranes during an in vitro freeze-thaw cycle. Biochim. Biophys. Acta 861: 152–158

    CAS  Google Scholar 

  • Hincha DK, Bakaltcheva I, Schmitt JM (1993) Galactose-specific lectins protect isolated thylakoids against freeze-thaw damage. Plant Physiol. 103: 59–65

    PubMed  CAS  Google Scholar 

  • Hincha DK, Bratt PJ, Williams WP (1997) A cryoprotective lectin reduces the solute permeability and lipid fluidity of thylakoid membranes, submitted

    Google Scholar 

  • Hincha DK, Heber U, Schmitt JM (1985) Antibodies against individual thylakoid membrane proteins as molecular probes to study chemical and mechanical freezing damage in vitro. Biochim. Biophys. Acta 809: 337–344

    Article  CAS  Google Scholar 

  • Hincha DK, Heber U, Schmitt JM (1989b) Freezing ruptures thylakoid membranes in leaves, and rupture can be prevented in vitro by cryoprotective proteins. Plant Physiol. Biochem. 27: 795–801

    CAS  Google Scholar 

  • Hincha DK, Heber U, Schmitt JM (1990) Proteins from frost-hardy leaves protect thylakoids against mechanical freeze-thaw damage in vitro. Planta 180: 416–419

    Article  CAS  Google Scholar 

  • Hincha DK, Höfner R, Schwab KB, Heber U, Schmitt JM (1987) Membrane rupture is the common cause of damage to chloroplast membranes in leaves injured by freezing or excessive wilting. Plant Physiol. 83: 251–253

    Article  PubMed  CAS  Google Scholar 

  • Hincha DK, Müller M, Hillmann T, Schmitt JM (1989a) Osmotic stress causes mechanical freeze-thaw damage to thylakoids in vitro and in vivo. In: Cherry J H (ed) Environmental stress in plants. Springer, Berlin, pp 303–315

    Chapter  Google Scholar 

  • Hincha DK, Schmidt JE, Heber U, Schmitt JM (1984) Colligative and non-colligative freezing damage to thylakoid membranes. Biochim. Biophys. Acta 769: 8–14

    Article  CAS  Google Scholar 

  • Hincha DK, Schmitt JM (1988a) Mechanical freeze-thaw damage and frost hardening in leaves and isolated thylakoids from spinach. I. Mechanical freeze-thaw damage in an artificial stroma medium. Plant Cell Environ. 11:41–46

    Article  CAS  Google Scholar 

  • Hincha DK, Schmitt JM (1988b) Mechanical freeze-thaw damage and frost hardening in leaves and isolated thy-lakoids from spinach. II. Frost hardening reduces solute permeability and increases extensibility of thylak-oid membranes. Plant Cell Environ. 11: 47–50

    Article  CAS  Google Scholar 

  • Hincha DK, Schmitt JM (1992a) Freeze-thaw injury and cryoprotection of thylakoid membranes. In: Somero G N, Osmond C B, Bolis C L (ed) Water and life. Springer, Berlin, pp 316–337

    Chapter  Google Scholar 

  • Hincha DK, Schmitt JM (1992b) Cryoprotective leaf proteins: assay methods and heat stability. J. Plant Physiol. 140:236–240

    Article  CAS  Google Scholar 

  • Hincha DK, Sieg F, Bakaltcheva I, Köth H, Schmitt JM (1996a) Freeze-thaw damage to thylakoid membranes: specific protection by sugars and proteins. In: Steponkus P L (ed) Advances in low-temperature biology. JAI Press, London, pp 141–183

    Chapter  Google Scholar 

  • Hincha DK, Sonnewald U, Whlmitzer L, Schmitt JM (1996b) The role of sugar accumulation in leaf frost hardiness-investigations with transgenic tobacco expressing a bacterial pyrophosphatase or a yeast invertase gene. J. Plant Physiol. 147: 604–610

    Article  CAS  Google Scholar 

  • Kates M (1990) Handbook of lipid research. Vol. 6, Plenum Press, New York.

    Google Scholar 

  • Lelkes PI, Miller IR (1980) Perturbations of membrane structure by optical probes: I. Location and structural sensitivity of merocyanine 540 bound to phospholipid membranes. J. Membrane Biol. 52: 1–15

    Article  CAS  Google Scholar 

  • Lentz BR (1993) Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chem. Phys. Lipids 64: 99–116

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses Vol. 1: Chilling, freezing, and high temperature stresses. Academic Press, Orlando

    Google Scholar 

  • Lis H, Sharon N (1986) Lectins as molecules and as tools. Annu. Rev. Biochem. 55: 35–67

    Article  PubMed  CAS  Google Scholar 

  • Loganathan D, Osborne SE, Glick GD, Goldstein IJ (1992) Synthesis of high-affinity, hydrophobic monosac-charide derivatives and study of their interaction with Concanavalin A, the pea, the lentil, and fava bean lectins. Arch. Biochem. Biophys. 299: 268–274

    Article  PubMed  CAS  Google Scholar 

  • Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol. 83: 761–767

    Article  PubMed  CAS  Google Scholar 

  • Quinn PJ (1982) The molecular biology of cell membranes. Macmillan Press, London

    Google Scholar 

  • Ramalingam TS, Das PK, Podder SK (1994) Ricin-membrane interaction: membrane penetration depth by fluorescence quenching and resonance energy transfer. Biochemistry 33: 12247–12254

    Article  PubMed  CAS  Google Scholar 

  • Roberts DD, Goldstein IJ (1982) Hydrophobic binding properties of the lectin from lima beans (Phaseolus lu-natus). J. Biol. Chem. 257: 11274–11277

    PubMed  CAS  Google Scholar 

  • Roberts DD, Goldstein IJ (1983) Binding of hydrophobic ligands to plant lectins: titration with arylaminonaph-talenesulfonates. Arch. Biochem. Biophys. 224: 479–484

    Article  PubMed  CAS  Google Scholar 

  • Rosas A, Alberdi M, Delseny M, Meza-Basso L (1986) A cryoprotective polypeptide isolated from Nothofagus dombeyi seedlings. Phytochemistry 25: 2497–2500

    Article  CAS  Google Scholar 

  • Santarius KA (1986) Freezing of isolated thylakoid membranes in complex media II. Simulation of the conditions in the chloroplast stroma. Cryo-Lett. 7: 31–40

    CAS  Google Scholar 

  • Schmidt JE, Schmitt JM, Kaiser WM, Hincha DK (1986) Salt treatment induces frost hardiness in leaves and isolated thylakoids from spinach. Planta 168: 50–55

    Article  CAS  Google Scholar 

  • Sharon N (1993) Lectin-carbohydrate complexes of plants and animals: an atomic view. TIBS 18: 221–226

    PubMed  CAS  Google Scholar 

  • Sieg F, Schröder W, Schmitt JM, Hincha DK (1996) Purification and characterization of a cryoprotective protein (cryoprotectin) from the leaves of cold-acclimated cabbage. Plant Physiol. 111: 215–221

    PubMed  CAS  Google Scholar 

  • Thomashow MF (1990) Molecular genetics of cold acclimation in higher plants. In: Scandalios J G (ed) Genomic responses to environmental stress. Academic Press, San Diego, pp 99–131

    Chapter  Google Scholar 

  • Thomashow MF (1993) Genes induced during cold acclimation in higher plants. In: Steponkus P L (ed) Advances in low-temperature biology. JAI Press, London, England, pp 183–210

    Google Scholar 

  • Volger HG, Heber U (1975) Cryoprotective leaf proteins. Biochim. Biophys. Acta 412: 335–349

    Article  PubMed  CAS  Google Scholar 

  • Webb MS, Green BR (1991) Biochemical and biophysical properties of thylakoid acyl lipids. Biochim. Biophys. Acta 1060: 133–158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hincha, D.K., Sieg, F., Schmitt, J.M. (1997). Protection of Thylakoid Membranes from Freeze-Thaw Damage by Proteins. In: Li, P.H., Chen, T.H.H. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0277-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0277-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0279-5

  • Online ISBN: 978-1-4899-0277-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics