Skip to main content

Molecular Chaperones: Do they Have a Role in Cold Stress Responses of Plants?

  • Chapter
Book cover Plant Cold Hardiness

Abstract

Molecular chaperones are proteins that assist in the in vivo biogenesis of enzymes and structural proteins. They participate in biogenesis in several ways by: binding to non-native nascent peptides emerging from ribosomes thereby preventing irreversible aggregation prior to folding, maintaining translocation across organelle membranes by stabilizing unfolded translocation competent forms, and helping in the assembly of oligomeric complexes. Numerous aspects of these processes are sensitive to high temperatures and consequently many molecular chaperones were first characterized as heat shock proteins. Generally lower temperatures increase the stability of proteins favoring the native state. However, there is a theoretical basis for a decreased stability and denaturation of some, so called “cold labile” proteins, and some aspects of translocation and assembly may also be similarly influenced by low temperature. The dehydration stress imposed during a freeze/ thaw cycle may further alter the intracellular milieu in ways that could favor protein denaturation. An examination of the RNA levels of several members of one family of molecular chaperones, the HSP70s, in response to exposure of spinach to 5°C revealed a pattern of differential expression that is consistent with a hypothesis that suggests that certain components of the protein biogenesis machinery requires some level of augmentation. It is proposed that chilling injury may arise, in part, from an impairment of normal protein biogenesis leading to an inability to form, or maintain, functional enzymes and structural proteins essential for cell homeostasis. Since the native state is stabilized at low temperature for most proteins, abnormalities in protein biogenesis would not be a global consequence, but only affect a subset of the proteins present in chilling sensitive plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alber T (1989) Mutational effects on protein stability. Ann Rev Biochem 58: 765–798

    Article  PubMed  CAS  Google Scholar 

  • Anderson, JV, Li, Q-B, Haskell, DW, Guy, CL (1993) Structural organization of the spinach endoplasmic reticu-lum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol 104: 1359–1370

    Article  Google Scholar 

  • Angelopoulos K, Gavalas NA (1988) Reversible cold inactivation of C4-phosphoenolpyruvate carboxylase: Factors affecting reactivation and stability. J Plant Physiol 132: 714–719

    Article  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Beckmann, RP, Mizzen, LA, Welch, WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: Implications for protein folding and assembly. Science 248: 850–854

    Article  PubMed  CAS  Google Scholar 

  • Bennun A, Racker E (1969) Partial resolution of the enzymes catalyzing photophosphorylation. J Biol Chem 244: 1325–1331

    PubMed  CAS  Google Scholar 

  • Bligny R., Rebeill F, Douce R (1985) 02-triggered changes of membrane fatty acid composition have no effect on Arrhenius discontinuities of respiration in sycamore (Acer pseudoplatanus L.) cells. J Biol Chem 260: 9166–9170

    PubMed  CAS  Google Scholar 

  • Bock, PE, Frieden, C (1978) Another look at the cold lability of enzymes. Trends Biochem Sci 3: 100–103

    Article  CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32: 191–222

    Article  PubMed  CAS  Google Scholar 

  • Bowie JU, Reidhaar-Olson JF, Lim WA, Sauer RT (1990) Deciphering the message in protein sequences: Tolerance to amino acid substitutions. Science 247: 1306–1310

    Article  PubMed  CAS  Google Scholar 

  • Brandon C, Tooze J (1991) Introduction to Protein Structure. Garland Publishing, London. 302 pps.

    Google Scholar 

  • Bredemeijer GMM, Burg HCJ, Claassen PAM, Stiekema WJ (1991) Phosphofructokinase in relation to sugar accumulation in cold-stored potato tubers. J Plant Physiol 138: 129–135

    Article  CAS  Google Scholar 

  • Brodsky, JL, Hamamoto, S, Feldheim, D, Schekman, R (1993) Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles for BiP and cytosolic Hsc70. J Cell Biol 20:95–102

    Article  Google Scholar 

  • Burnell JN (1990) Acomparative study of the cold-sensitivity of pyruvate, PI dikinase in Flaveria species. Plant Cell Physiol 31: 295–297

    CAS  Google Scholar 

  • Cabane M, Calvet P, Vincens P, Boudet AM (1993) Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP 70) family. Planta 190: 346–353

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Schellman JA (1989) Low-temperature unfolding of a mutant of phage T4 lysozyme. 1. Equilibrium studies. Biochemistry 28: 685–689

    Article  PubMed  CAS  Google Scholar 

  • Chiang, H-L, Terlecky, SR, Plant, CP, Dice, JF (1989) A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382–385

    Article  PubMed  CAS  Google Scholar 

  • Chilson OP, Costello LA, Kaplan NO (1965) Effects of freezing on enzymes. Fed Proc suppl 15: 55–65

    Google Scholar 

  • Chirico, WJ, Waters, MG, Blobel, G (1988) 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332: 805–810

    Article  PubMed  CAS  Google Scholar 

  • Chollet R, Anderson LL (1977) Conformational changes associated with reversible cold inactivation of ribulose-1,5-bisphosphate carboxylase-oxygenase. Biochim Biophys Acta 482: 228–240

    Article  PubMed  CAS  Google Scholar 

  • Collins GG, Nie X, Saltveit ME (1993) Heat shock increases chilling tolerance of mung bean hypocotyl tissue. Physiol Plant 89: 117–124

    Article  CAS  Google Scholar 

  • Creighton TE (1990) Understanding protein folding pathways and mechanisms. In Protein Folding: Deciphering the Second Half of the Genetic Code, eds. L.M. Gierasch and J. King. AAAS, Washington, pps. 157–170.

    Google Scholar 

  • Deshaies, RJ, Koch, BD, Werner-Washburne, M, Craig, EA, Schekman, R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332: 800–805

    Article  PubMed  CAS  Google Scholar 

  • Dill KA, Shortle D (1991) Denatured states of proteins. Ann Rev Biochem 60: 795–825

    Article  PubMed  CAS  Google Scholar 

  • Dixon WL, Franks F, Aprees T (1981) Cold-lability of phosphofructokinase from potato tubers. Phytochemistry 20: 969–972

    Article  CAS  Google Scholar 

  • Douzou P (1977) Cryobiochemistry: An Introduction. Academic Press, London. Pps. 286.

    Google Scholar 

  • Downton WJS, Hawker, JS (1975) Evidence for lipid-enzyme interaction in starch synthesis in chilling-sensitive plants. Phytochemistry 14: 1259–1263

    Article  CAS  Google Scholar 

  • Ellis, RJ, van der Vies, SM (1991) Molecular chaperones. Ann Rev Biochem 60: 321–347

    Article  PubMed  CAS  Google Scholar 

  • Fink AL, Calciano LJ, Goto Y, Palleros D (1991) Conformation states in acid-denatured proteins. In Conformations and Forces in Protein Folding, eds. B.T. Nall and K.A. Dill. AAAS, Washington, pps. 169–174.

    Google Scholar 

  • Franks F (1985) Biophysics and Biochemistry at Low Temperature. Cambridge University Press, Cambridge. pps. 210.

    Google Scholar 

  • Gaitanaris, GA, Papavassiliou, AG, Rubock, P, Silverstein, SJ, Gottesman, ME (1990) Renaturation of denatured λ repressor requires heat shock proteins. Cell 61: 1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Gething, M-J, Sambrook, J (1992) Protein folding in the cell. Nature 355: 33–45

    Article  PubMed  CAS  Google Scholar 

  • Graham D, Patterson BD (1982) Responses of plants to low, nonfreezing temperatures: Proteins, metabolism, and acclimation. Ann Rev Plant Physiol 33: 347–372

    Article  CAS  Google Scholar 

  • Grayson JE, Yon RJ (1979) Wheat-germ aspartate transcarbamoylase. Biochem J 183: 239–245

    PubMed  CAS  Google Scholar 

  • Griko YV, Venyaminov SY, Privalov PL (1989) Heat and cold denaturation of phosphoglycerate kinase (interaction of domains). FEBS Lett 244: 276–278

    Article  PubMed  CAS  Google Scholar 

  • Guy, CL, Haskell, D (1987) Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol 84: 872–878

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Anderson JV, Haskell DW, Li Q-B (1994) Caps, cors, dehydrins, and molecular chaperones: Their relationship with low temperature responses in spinach. In Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, ed. JH Cherry ed. Springer-Verlag, Berlin. Pps 479–499

    Chapter  Google Scholar 

  • Hammond JBW, Burrell MM, Kruger NJ (1990) Effect of low temperature on the activity of phosphofructokinase from potato tubers. Planta 180: 613–616

    Article  CAS  Google Scholar 

  • Hardies SC, Garvin LD (1991) Can molecular evolution provide clues to the folding code? In Conformations and Forces in Protein Folding, eds. B.T. Nall and K.A. Dill. AAAS, Washington, pps. 69–76.

    Google Scholar 

  • Hatch MD (1979) Regulation of C4 photosynthesis: Factors affecting cold-mediated inactivation and reactivation of pyruvate, PI dikinase. Aust J Plant Physiol 6: 607–619

    Article  CAS  Google Scholar 

  • Hatch MD, Oliver IR (1978) Activation and inactivation of phosphoenolpyruvate carboxylase in leaf extracts from C4 species. Aust J Plant Physiol 5: 571–580

    Article  CAS  Google Scholar 

  • Hetherington SE, He J, Smillie RM (1989) Photoinhibition at low temperature in chilling-sensitive and-resistant plants. Plant Physiol 90: 1609–1615

    Article  PubMed  CAS  Google Scholar 

  • Hofstee BHJ (1949) The activation of urease. J Gen Physiol 32: 339–349

    Article  PubMed  CAS  Google Scholar 

  • Horak A, Horak H, Packer M (1987) Subunit composition and cold stability of the pea cotyledon mitochondrial Fl-ATPase. Biochim Biophys Acta 893: 190–196

    Article  CAS  Google Scholar 

  • Hugly S, McCourt P, Browse J, Patterson GW, Somerville C (1990) A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism. Plant Physiol 93: 1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki Y, Asahi T (1983) Purification and characterization of the soluble form of mitochondrial adenosine triphosphatase from sweet potato, rch. Biochem. Biophys. 227: 164–173

    Article  CAS  Google Scholar 

  • Jeffrey GA, McMullan RK (1967) The clathrate hydrates. In Progress in Inorganic Chemistry, vol. 8, ed. FA Cotton. Wiley, New York. Pps. 43–108

    Chapter  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kanervo E, Aro E-M, Murata N (1995) Low unsaturation level of thylakoid membrane lipids limits turnover of the Dl protein of photosystem II at high irradiance. FEBS Lett 364: 239–242

    Article  PubMed  CAS  Google Scholar 

  • Kasamo K (1988) Response of tonoplast and plasma membrane ATPases in chilling-sensitive and-insensitive rice (Oryza sativa L.) culture cells at low temperature. Plant Cell Physiol 29: 1085–1094

    CAS  Google Scholar 

  • Kauzmann, W (1959) Some factors in the interpretation of protein denaturation. In CB Anfinsen, ML Anson, K Bailey, JT Edsall eds, Advances in Protein Chemistry. Academic Press, New York, pp 1–63

    Google Scholar 

  • Kawashima N, Singh S, Wildman SG (1971) Reversible cold inactivation and heat reactivation of RuDP car-boxylase activity of crystallized tobacco fraction I protein. Biochem Biophys Res Comm 42: 664–668

    Article  PubMed  CAS  Google Scholar 

  • Kim PS, Baldwin RL (1990) Intermediates in the folding reactions of small proteins. Ann Rev Biochem 59: 631–660

    Article  PubMed  CAS  Google Scholar 

  • Knittler, MR, Haas, IG (1992) Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release. EMBO J 11: 1573–1581

    PubMed  CAS  Google Scholar 

  • Ko K, Bornemisza O, Kourtz L, Ko ZW, Plaxton WC, Cashmore AR (1992) Isolation and characterization of a cDNA clone encoding a cognate 70-kDa heat shock protein of the chloroplast envelope. J Biol Chem 267: 2986–2993

    PubMed  CAS  Google Scholar 

  • Kostrewa D, Choe H-W, Heinemann U, Saenger W (1989) Crystal structure of guanosine-free ribonuclease T1, complexed with vanadate(V), suggests conformational change upon substrate binding. Biochemistry 28: 7592–7599

    Article  PubMed  CAS  Google Scholar 

  • Krall JP, Edwards GE, Andreo CS (1989) Protection of pyruvate, PI dikinase from maize against cold lability by compatible solutes. Plant Physiol 89: 280–285

    Article  PubMed  CAS  Google Scholar 

  • Krishna P, Sacco M, Cherutti JF, Hill S (1995) Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol 107:915–923

    PubMed  CAS  Google Scholar 

  • Lelivelt MJ, Kawula TH (1995) Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J Bacteriol 177: 4900–4907

    PubMed  CAS  Google Scholar 

  • Levitt J (1962) A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants. J Theoret Biol 3: 355–391.

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of Plants to Environmental Stresses: Chilling, Freezing and High Temperature Stresses. Vol. 1. 2nd ed. Academic Press, New York 497p.

    Google Scholar 

  • Li G, Knowles PF, Murphy DJ, Marsh D (1990) Lipid-protein interactions in thylakoid membranes of chilling-resistant and-sensitive plants studied by spin label electron spin resonance spectroscropy. J Biol Chem 265: 16867–16872

    PubMed  CAS  Google Scholar 

  • Lurie S, Klein JD (1991) Acquisition of low-temperature tolerance in tomatoes by exposure to high-temperature stress. J Am Soc Hortic Sci 116: 1007–1012

    Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Ann Rev Plant Physiol 24: 445–466

    Article  CAS  Google Scholar 

  • Lyons JM, Raison JK (1970) Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol 45: 386–389

    Article  PubMed  CAS  Google Scholar 

  • Marivet J, Margis-Pinheiro M, Frendo P, Burkard G (1994) Bean cyclophilin gene expression during plant development and stress conditions. Plant Mol Biol 26:1181–1189

    Article  PubMed  CAS  Google Scholar 

  • Marquesee S, Baldwin RL (1990) α-Helix formation by short peptides in water. In Protein Folding: Deciphering the Second Half of the Genetic Code, ed by LM Giersach, J King. AAAS, Washington. Pps 85–94

    Google Scholar 

  • Michalski WP, Kaniuga Z (1981) Photosynthetic apparatus of chilling-sensitive plants. X. Relationship between su-peroxide dismutase activity and photoperoxidation of chloroplast lipids. Biochim Biophys Acta 637: 159–167

    Article  CAS  Google Scholar 

  • Miles EW (1991) The tryptophan synthase a2b2 multienzyme complex. In Conformations and Forces in Protein Folding, eds. B.T. Nall and K.A. Dill. AAAS, Washington, pps. 115–124.

    Google Scholar 

  • Minton KW, Karmin, P, Hahn, GM, Minton, AP (1982) Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: A model for the biological role of heat shock proteins. Proc Natl Acad Sci USA 79:7107–7111

    Article  PubMed  CAS  Google Scholar 

  • Miquel M, Browse J (1994) High-oleate oilseeds fail to develop at low temperature. Plant Physiol 106: 421–427

    PubMed  CAS  Google Scholar 

  • Miquel M, James D Jr, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA 90: 6208–6212

    Article  PubMed  CAS  Google Scholar 

  • Moon BY, Higashi S-I, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219–6223

    Article  PubMed  CAS  Google Scholar 

  • Murata N (1983) Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 24: 81–86

    CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710–713

    Article  CAS  Google Scholar 

  • Murata N, Sato N, Takahashi N, Hamazaki Y (1982) Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 23: 1071–1079

    CAS  Google Scholar 

  • Murphy KP, Privalov PL, Gill SJ (1990) Common features of protein unfolding and dissolution of hydrophobic compounds. Science 247: 559–561

    Article  PubMed  CAS  Google Scholar 

  • Neven LG, Haskell DW, Guy CL, Denslow N, Klein PA, Green LG, Silverman A (1992) Association of 70 kDa heat shock cognate proteins with acclimation to cold. Plant Physiol 99: 1362–1369

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, B, Kuntz, ID, Anderson, S (1990) Expression and stabilization: Bovine pancreatic trypsin inhibitor folding mutants in Escherichia coli. In LM Gierasch, J King ed, Protein Folding: Deciphering the Second Half of the Genetic Code. AAAS, Washington, pp 117–122

    Google Scholar 

  • Nover L, Scharf K-D (1997) Heat stress proteins and transcription factors. Cell Mol Life Sci 53: 80–103

    Article  PubMed  CAS  Google Scholar 

  • Omran RG (1980) Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiol 65: 407–408

    Article  PubMed  CAS  Google Scholar 

  • Pace CN (1990) Conformational stability of globular proteins. Trends Biochem Sci 15: 14–17

    Article  PubMed  CAS  Google Scholar 

  • Pace CN, Laurents DV (1989) A new method for determining the heat capacity change for protein folding. Biochemistry 28: 2520–2525

    Article  PubMed  CAS  Google Scholar 

  • Pareek A, Singla SL, Grover A (1995) Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Mol Biol 29: 293–301

    Article  PubMed  CAS  Google Scholar 

  • Parry RV, Turner JC, Rea PA (1989) High purity preparations of higher plant vacuolar H+-ATPase reveal additional subunits. J Biol Chem 264: 20025–20032

    PubMed  CAS  Google Scholar 

  • Pease JHB, Storrs RW, Wemmer DE (1991) Folding and activity of hybrid sequence, disulfide-stabilized pep-tides. In Conformations and Forces in Protein Folding, eds. B.T. Nall and K.A. Dill. AAAS, Washington, pps. 77–85.

    Google Scholar 

  • Pelham HRB (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959–961

    Article  PubMed  CAS  Google Scholar 

  • Privalov, PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25: 281–305

    Article  PubMed  CAS  Google Scholar 

  • Sabehat A, Weiss D, Lurie S (1996) The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant Physiol 110: 531–537

    Article  PubMed  CAS  Google Scholar 

  • Sassenrath GF, Ort DR (1990) The relationship between inhibition of photosynthesis at low temperature and the inhibition of photosynthesis after rewarming in chill-sensitive tomato. Plant Physiol Biochem 28: 457–465

    CAS  Google Scholar 

  • Sassenrath GF, Ort DR, Portis AR (1990) Impaired reductive activation of stromal bisphosphatases in tomato leaves following low-temperature exposure at high light. Arch Biochem Biophys 282: 302–308

    Article  PubMed  CAS  Google Scholar 

  • Schmid, SL, Braell, WA, Rothman, JE (1985) ATP catalyzes the sequestration of clathrin during enzymatic un-coating. J Biol Chem 260: 10057–10062

    PubMed  CAS  Google Scholar 

  • Sheldon PS, Kekwick RGO, Sidebottom C, Smith CG, Slabas AR (1990) 3-Oxoacyl-(acyl-carrier protein) re-ductase from avocado (Persea americana) fruit mesocarp. Biochem J 271: 713–720

    PubMed  CAS  Google Scholar 

  • Shirahashi K, Hayakawa, S, Sugiyama T (1978) Cold lability of pyruvate, orthophosphate dikinase in the maize leaf. Plant Physiol 62: 826–830

    Article  PubMed  CAS  Google Scholar 

  • Skowyra, D, Georgopoulos, C, Zylicz, M (1990) The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62: 939–944

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Browse J (1991) Plant lipids: Metabolism, mutants, and membranes. Science 252: 80–87

    Article  PubMed  CAS  Google Scholar 

  • Spitsberg VL, Pfeiffer NE, Partridge B, Wylie DE, Schuster SM (1985) Isolation and antigenic characterization of corn mitochondrial Fl-ATPase. Plant Physiol 77: 245–339

    Article  Google Scholar 

  • Stigter D, Dill KA (1991) Charge effects on folded and unfolded proteins. In Conformations and Forces in Protein Folding, eds. B.T. Nall and K.A. Dill. AAAS, Washington. pps. 28–42

    Google Scholar 

  • Taborsky G (1979) Protein alternations at low temperature: An overview. In Proteins at Low Temperature, ed by O. Fennema. Am Chem Soc, Washington, DC. Pps 1–26

    Chapter  Google Scholar 

  • Tasayco ML, Carey J (1992) Ordered self-assembly of polypeptide fragments to form nativelike dimeric trp repressor. Science 255: 594–597

    Article  PubMed  CAS  Google Scholar 

  • Taylor AO, Slack CR, McPherson HG (1974) Plants under climatic stress. Plant Physiol 54: 696–701

    Article  PubMed  CAS  Google Scholar 

  • Teeter MM (1990) The water structure surrounding proteins. In, LM Gierasch, J King ed, Protein Folding: Deciphering the Second Half of the Genetic Code. AAAS, Washington, pp 44–62

    Google Scholar 

  • Terzaghi WB, Fork DC, Berry JA, Field CB (1989) Low and high temperature limits to PSII. A survey using trans-parinaric acid, delayed light emission, and Fo chlorophyll fluorescence. Plant Physiol 91: 1494–1500

    Article  PubMed  CAS  Google Scholar 

  • Uedan K, Sugiyama T (1976) Purification and characterization of phosphenolpyruvate carboxylase from maize leaves. Plant Physiol 57: 906–910

    Article  PubMed  CAS  Google Scholar 

  • Vierling, E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579–620

    Article  CAS  Google Scholar 

  • Wada H, Gombos Z, Murata N (1990) Enhancement of chilling tolerance of a cynaobacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–203

    Article  PubMed  CAS  Google Scholar 

  • Walker GH, Ku MSB, Edward GE (1986) Catalytic activity of maize leaf phosphoenolpyruvate carboxylase in relation to oligomerization. Plant Physiol 80: 848–855

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Goffreda M, Leustek T (1993) Characteristics of an Hsp70 homologue localized in higher plant chloro-plasts that is similar to DnaK, the Hsp70 of prokaryotes. Plant Physiol 102: 843–850

    Article  PubMed  CAS  Google Scholar 

  • Weeden NF, Buchanan BB (1983) Leaf cytosolic fructose-1,6-bisphosphatase. Plant Physiol 72: 259–261

    Article  PubMed  CAS  Google Scholar 

  • Wolter FP, Schmidt R, Heinz E (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J 11: 4685–4692

    PubMed  CAS  Google Scholar 

  • Yoshida S, Matsuura C, Etani S (1989) Impairment of tonoplast H+-ATPase as an initial physiological response of cells to chilling in mung bean (Vigna radiata [L.] Wilczek). Plant Physiol 89: 634–642

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E (1987) On the molecular evolutionary clock. J Mol Evol 26: 34–46

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guy, C., Haskell, D., Li, QB., Zhang, C. (1997). Molecular Chaperones: Do they Have a Role in Cold Stress Responses of Plants?. In: Li, P.H., Chen, T.H.H. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0277-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0277-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0279-5

  • Online ISBN: 978-1-4899-0277-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics