Skip to main content

Molecular Mechanism of Plant Cold Acclimation and Freezing Tolerance

  • Chapter

Abstract

Suboptimal temperature is one of the primary stresses limiting growth, productivity and distribution of plants (Boyer 1982). Two types of low temperature stress can be recognized: (i) chilling stress at temperatures above zero (0–10°C) and (ii) freezing stress at subzero temperatures. Depending on the duration and severity of the stress, exposure to these temperatures can lead to extensive damage to the plants. Chilling sensitivity is common in plants originating from tropical and subtropical regions and the injury is mainly a consequence of destabilization of cell membranes (Levitt 1980). In contrast, plants from temperate regions are in general chilling resistant. In addition, plants growing in temperate regions are commonly encountering subzero temperatures during their growth season and consequently, they have evolved mechanisms to survive the freezing stress. Survival of freezing temperatures is achieved through two main mechanisms: avoidance of or tolerance to freezing. Avoidance of freezing is mainly achieved through supercooling of tissue water and is employed e. g. by xylem parenchyma cells of woody angiosperms, which can supercool to −40°C, the temperature where homogeneous ice nucleation of pure water is taking place. However, avoidance of freezing is not regarded as a major survival mechanism in herbaceous plants, where the main survival determinant appears to be tolerance to freezing (Sakai and Larcher 1987). Tolerance to freezing is not a static characteristic but many species from temperate regions can increase their tolerance when exposed to low nonfreezing temperatures, a process called cold acclimation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguan K, Sugawara K, Suzuki N, Kusano T (1993) Low-temperature-dependent expression of a rice gene encoding a protein with a leucine zipper motif.-Mol. Gen. Genet. 240: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Anderson J V, Li Q B, Haskell D W, Guy C L (1994) Structural organization of the spinach endoplasmic reticu-lum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation.-Plant Physiol. 104: 1359–1370.

    Article  PubMed  CAS  Google Scholar 

  • Artus N N, Gilmour S J, Lin C, Thomashow M F (1994) Use of transgenic Arabidopsis plants to evaluate the roles of cold-regulated genes in freezing tolerance.-Plant Physiol. 105: S169.

    Google Scholar 

  • Baker J, Steele C, Dure III L (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton.-Plant Mol. Biol. 11: 277–291.

    Article  CAS  Google Scholar 

  • Baudo M M, Meza-Zepeda L A, Palva E T, Heino P (1996) Induction of homologous low temperature and ABA responsive genes in frost resistant (Solanum commersonii) and frost sensitive (Solanum tuberosum cv. Bin-tje) potato species.-Plant Mol. Biol. 30: 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Boyer J S 1982. Plant productivity and enviroment.-Science 218: 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Chua N-H (1994) Emerging themes in plant signal transduction.-Plant Cell 6: 1529–154

    PubMed  CAS  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit.-Plant Physiol. 103: 1035–1040.

    PubMed  CAS  Google Scholar 

  • Castonguay Y, Laberge S, Nadeu P, Vezina L-P (1994) A cold-induced gene from Medicago sativa encodes a bi-modular protein similar to developmentally regulated proteins.-Plant Mol. Biol. 24: 799–804.

    Article  PubMed  CAS  Google Scholar 

  • Chauvin LP, Houde M, Sarhan F (1993) A leaf-specific gene stimulated by light during wheat acclimation to low temperature.-Plant Mol. Biol. 23: 255–265.

    Article  PubMed  CAS  Google Scholar 

  • Chen H H, Li P H, Brenner M L (1983) Involvement of abscisic acid in potato cold acclimation.-Plant Physiol. 71:362–365.

    Article  PubMed  CAS  Google Scholar 

  • Close T J, Kortt A A, Chandler P M (1989) A complementary DNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn.-Plant Mol. Biol. 13: 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Close T J, Fenton R D, Yang A, Asghar R, DeMason D A, Crone D E, Meyer N C, Moonan F (1993) Dehy-drin: the protein.-In Plant Responses to Cellular Dehydration During Environmental Stress (Close T J and Bray E A, eds) pp. 104-118. The American Society of Plant Physiologists.

    Google Scholar 

  • Cloutier Y, Siminovitch D (1982) Correlation between cold-and drought-induced frost hardiness in winter wheat and rye varieties.-Plant Physiol. 69: 256–258.

    Article  PubMed  CAS  Google Scholar 

  • Crowe J H, Crowe L M, Leslie S B, Fisk E (1993) Mechanisms of stabilization of dry biomolecules in anhydro-biotic organisms.-In: Plant Responses to Cellular Dehydration During Enviromental Stress (Close T J and Bray E A, eds) pp 11-20, The American Society of Plant Physiologists.

    Google Scholar 

  • Deutch A H, Smith C J, Rushlow K E, Kretschmer P J (1984) Analysis of Escherichia coli proBA locus by DNA and protein sequencing. Nucleic Acid Res. 12: 6337–6355.

    Article  PubMed  CAS  Google Scholar 

  • De Virgilio C, Burckert N, Bell W, Jenö P, Boiler T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100 kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphateand loss ofphosphatase activity. -Eur.J.Biochem. 212:315–323.

    Article  Google Scholar 

  • Ding J P, Pickard B G (1993) Modulation of mechanosensitive calcium-selective channels by temperature.-Plant J. 3: 713–720.

    Article  PubMed  CAS  Google Scholar 

  • Dunn M A, Hughes M A, Zhang L, Pearce R S, Quigley A S, Jack P L (1991) Nucleotide sequence and molecular analysis of the low temperature induced cereal gene, BLT4.-Mol. Gen. Genet. 229: 389–394.

    Article  PubMed  CAS  Google Scholar 

  • Dure L III, Crouch M, Harada J, Ho T H D, Mundy J, Quatrano R, Thomas T, Sung Z R (1989) Common amino acid sequence domains among the LEA proteins of higher plants.-Plant Mol. Biol. 12: 475–486.

    Article  CAS  Google Scholar 

  • Gilmour S J, Artus N N, Thomashow M F (1992) cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana.-Plant Mol. Biol. 18: 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour S J, Thomashow M F (1991) Cold acclimation and cold regulated gene expression in ABA mutants of A rabidopsis thaliana.-Plant Mol. Biol. 17: 1233–1240.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour S J, Lin C T, Thomashow M F (1996) Purification and properties of Arabidopsis thaliana COR (cold regulated polypeptides COR 15a and COR6.6 expressed in Escherichia coli.-Plant Physiol. 111: 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Goddard N J, Dunn M A, Zhang L, White A J, Jack P L, Hughes M A (1993) Molecular analysis and spatial expression pattern of a low-temperature-specific barley gene, blt101.-Plant Mol. Biol. 23: 871–879.

    Article  PubMed  CAS  Google Scholar 

  • Guiltinan M J, Marcotte W R J, Quatrano R S (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Ward R W, Thomashow M F (1992) Characterization of a cold-regulated wheat gene related to Arabidopsis cor47.-Plant Physiol. 100: 915–922.

    Article  PubMed  CAS  Google Scholar 

  • Guy C L, Niemi K J, Brambl R (1985) Altered gene expression during cold acclimation of spinach.-Proc. Natl. Acac. Sci. USA 82: 3673–3677.

    Article  CAS  Google Scholar 

  • Guy C, Haskell D, Neven L, Klein P, Smelser C (1992) Hydration-state-responsive proteins link cold and drought stress in spinach.-Planta 188: 265–270.

    Article  CAS  Google Scholar 

  • Hajela R K, Horvath D P, Gilmour S J, Thomashow M F (1990) Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana.-Plant Physiol. 93: 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  • Heino P, Sandman G, Lång V, Nordin K, Palva E T (1990) Abscisic acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana (L.) Heynh.-Theor. Appl. Genet. 79: 801–806.

    Article  CAS  Google Scholar 

  • Hincha D K, Heber U, Schmitt J M (1990) Proteins from frost-hardy leaves protect thylakoids against mechanical freeze-thaw damage in vitro.-Planta 180: 416–419.

    Article  CAS  Google Scholar 

  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phpspholipase C is induced by dehydration and salt stress in Arabidopsis thaliana.-Proc. Natl. Acad. Sci. USA 92: 3903–3907.

    Article  PubMed  CAS  Google Scholar 

  • Holappa L D, Walker-Simmons M K (1995) The wheat abscisic acid-responsive protein kinase mRNA PKABA1, is upregulated by dehydration, cold temperature and osmotic stress.-Plant Physiol. 108: 1203–1210.

    PubMed  CAS  Google Scholar 

  • Holmström K-O, Mäntylä E, Welin B, Mandal A, Tuunela O E, Londesborough J, Palva E T (1996) Drought tolerance in tobacco. Nature 379: 683–684.

    Article  Google Scholar 

  • Houde M, Danyluk J, Laliberte J F, Rassart E, Dhindsa R S, Sarhan F (1992) Cloning, characterization, and expression of cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat.-Plant Physiol. 99: 1381–1387.

    Article  PubMed  CAS  Google Scholar 

  • Jarillo J A, Capel J, Leyva A, Martinez-Zapater J M, Salinas J (1994) Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins, a family of putative ki-nase regulators.-Plant Mol. Biol. 25: 693–704.

    Article  PubMed  CAS  Google Scholar 

  • Knight M R, Campbell A K, Smith S M, Trewavas A J (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium.-Nature 352: 524–526.

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas A J, Knight M R (1996) Cold calcium signalling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation.-Plant Cell 8: 489–503.

    PubMed  CAS  Google Scholar 

  • Koornneef M, Jorna M L, Brinkhorst-van der Swan D LC, Karssen C M (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh.-Theor. Appl. Genet. 61: 385–393.

    CAS  Google Scholar 

  • Koornneef M, Reuling G, Karssen C M (1984) The isolation of abscisic acid-insensitive mutants of Arabidopsis thaliana.-Physiol. Plant. 61: 385–393.

    Article  Google Scholar 

  • Krishna P, Sacco M, Cherutti J F, Hill S (1995) Cold-induced accumulation of hsp90 transcript in Brassica napus.-Plant Physiol. 107: 915–923.

    PubMed  CAS  Google Scholar 

  • Kurkela S, Franck M, Heino P, Lång V, Palva E T (1988) Cold induced gene expression in Arabidopsis thaliana L.-Plant Cell Rep. 7: 495–498.

    Article  CAS  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene.-Plant Mol. Biol. 15: 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Lalk I, Dörffling K (1985). Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties.-Physiol. Plant. 63: 287–292.

    Article  CAS  Google Scholar 

  • Lamark T, Kaasen I, Eshoo M W, Falkenberg P, McDougall J, Strøm A R (1991). DNA sequence and analysis of the bet genes encoding the osmoregulating choline-glycine betaine pathway of Escherichia coli.-Molec. Microbiol. 5: 1049–1064.

    Article  CAS  Google Scholar 

  • Lee S P, Chen T H H (1993) Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension culture.-Plant Physiol. 101: 1089–1096.

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Bouvier-Durand M, Morris P-C, Guerrier D, Chefdor F, Giraudad J (1994) Arabidopsis ABA response gene AB11: features of a calcium-modulated protein phosphatase.-Science 264: 1448–1452.

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (1980)-In Responses of Plants to Environmental Stresses: Chilling, Freezing and High Temperature Stresses, ed 2, vol 1. Academic Press, New York, USA.

    Google Scholar 

  • Lin C, Thomashow M F (1992) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryopro-tective activity.-Biochem. Biophys. Res. Comm. 183: 1103–1108.

    Article  PubMed  CAS  Google Scholar 

  • Lång V, Palva E T (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh.-Plant Mol. Biol. 20: 951–962.

    Article  PubMed  Google Scholar 

  • Lång V, Heino P, Palva E T (1989) Low temperature acclimation and treatment with exogenous abscisic acid induce common polypeptides in Arabidopsis thaliana (L.) Heynh.-Theor. Appl. Genet. 77: 729–734.

    Article  Google Scholar 

  • Lång V, Mäntylä E, Welin B, Sundberg B, Palva E T (1994) Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana.-Plant Physiol. 104: 1341–1349.

    PubMed  Google Scholar 

  • Marivet J, Margis-Pinheiro M, Frendo P, Burkard G (1994) Bean cyclophilin gene expression during plant development and stress conditions.-Plant Mol. Biol. 26: 1181–1189.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, K, Leube M P, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana.-Science 264: 1452–1455.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a MAP kinase kinase kinase is induced simultaneously with genes for a MAP kinase and an S6 kinase by touch, cold and water stress in Arabidopsis thaliana.-Proc. Natl. Acad. Sci. USA 93: 765–769.

    Article  PubMed  CAS  Google Scholar 

  • Monroy A F, Castonguay Y, Laberge S, Sarhan F, Vezina L P, Dhindsa R S (1993a) Anew cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature.-Plant Physiol. 102: 873–879.

    Article  PubMed  CAS  Google Scholar 

  • Monroy A F, Sarhan F, Dhindsa R S (1993b) Cold induced changes in freezing tolerance, protein phosphorylation and gene expression: Evidence for a role of calcium.-Plant Physiol. 102: 1227–1235.

    Article  PubMed  CAS  Google Scholar 

  • Monroy A F, Dhindsa R S (1995) Low temperature signal transduction: Induction of cold acclimation-specific genes of alfalfa by calcium at 25°C.-Plant Cell 7: 321–331.

    PubMed  CAS  Google Scholar 

  • Mundy J, Chua N H (1988) Abscisic acid and water-stress induce the expression of a novel rice gene.-EMBO J. 7: 2279–2286.

    PubMed  CAS  Google Scholar 

  • Mundy J, Yamaguchi S K, Chua N-H (1990) Nuclear proteins bind to conserved elements in the abscisic acid-responsive promoter of a rice rab gene.-Proc. Natl. Acad. Sci. USA 87: 1406–1410.

    Article  PubMed  CAS  Google Scholar 

  • Mäntylä E, Lång V, Palva E T (1995) Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana.-Plant Physiol. 107: 141–148.

    PubMed  Google Scholar 

  • Mäntylä E (1997) Molecular mechanisms of cold acclimation and drought tolerance in plants.-PhD Thesis, University of Agricultural Sciences, Uppsala, Sweden.

    Google Scholar 

  • Neven, L G, Haskell D W, Guy C L, Denslow N, Klein P A, Green L G, Silverman A (1992) Association of 70-kilodalton heat-shock cognate proteins with acclimation to cold.-Plant Physiol. 99: 1362–1369.

    Article  PubMed  CAS  Google Scholar 

  • Neven L G, Haskell D W, Hofig A, Li Q B, Guy C L (1993) Characterization of a spinach gene responsive to low temperature and water stress.-Plant Mol. Biol. 21: 291–305.

    Article  PubMed  CAS  Google Scholar 

  • Nordin K, Heino P, Palva E T (1991) Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh.-Plant Mol. Biol. 16: 1061–1072.

    Article  PubMed  CAS  Google Scholar 

  • Nordin K, Vahala T & Palva E T (1993) Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh.-Plant Mol. Biol. 21: 641–653.

    Article  PubMed  CAS  Google Scholar 

  • Nordin-Henriksson K (1995) Cold acclimation and expression of low temperature-induced genes in Arabidopsis thaliana.-PhD Thesis, University of Agricultural Sciences, Uppsala, Sweden.

    Google Scholar 

  • Orr W, lu B, White T C, Robert L S, Singh J (1992) Complementary DNA sequence of a low temperature-induced Brassica napus gene with homology to the Arabidopsis thaliana kinl gene.-Plant Physiol. 98: 1532–1534.

    Article  PubMed  CAS  Google Scholar 

  • Orr W, White T C, lu B, Robert L, Singh J (1995) Characterization of a low-temperature-induced cDNA from winter Brassica napus encoding the 70 kDa subunit of tonoplast ATPase.-Plant Mol. Biol. 28: 943–948.

    Article  PubMed  CAS  Google Scholar 

  • Palta J P, Weiss L S (1993) Ice formation and freezing injury: An overview on the survival mechanisms and molecular aspects of injury and clod acclimation in herbaceous plants.-In: Advances in Plant Cold Hardiness. (Li P H; Christersson L eds.) pp. 143–176. CRC Press Inc. Boca Raton, Florida, USA.

    Google Scholar 

  • Palva E T (1994) Gene expression under low temperature stress.-In Stress Induced Gene Expression in Plants (A.S. Basra, ed) pp. 103–130. Harwood Academic Publishers, New York.

    Google Scholar 

  • Palva E T, Holmström K-O, Mäntylä E, Welin B, Mandal A, Tunnela O E, Londesborough J (1996) Enhanced desiccation survival by engineering osmolyte biosynthesis in plants.-In: Genes and their products for tolerance to physical stresses in plants. (Grillo S, Leone A, eds.) pp. 187–198. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Plana M, Harte E, Eritja R, Goday A, Pages M, Martinez M C (1991) Phosphorylation of maize RAB-17 protein by casein kinase 2.-J. Biol. Chem. 266: 22510–22514.

    PubMed  CAS  Google Scholar 

  • Plant A L, Cohen A, Moses M S, Bray E A (1991) Nucleotide sequence and spatial expression pattern of a drought-and abscisic acid-induced gene of tomato.-Plant Physiol. 97: 900–906.

    Article  PubMed  CAS  Google Scholar 

  • Ryu S B, Li P H (1994a) Potato cold hardiness development and abscisic acid. I. Conjugated abscisic acid is not the source of the increase in free abscisic acid during potato (Solanum commersonii) cold acclimation.-Physiol. Plant. 90: 15–20.

    Article  CAS  Google Scholar 

  • Ryu S B, Li P H (1994b) Potato cold hardiness development and abscisic acid. II. De novo protein synthesis is required for the increase in free abscisic acid during potato (Solanum commersonii) cold acclimation.-Physiol. Plant. 90:21–26.

    Article  CAS  Google Scholar 

  • Saéz-Vasquez J, Raynal M, Meza Basso L, Delseny M (1993) Two related, low-temperature-induced genes from Brassica napus are homologous to the human tumor bbcl (breast cancer conserved) gene.-Plant Mol. Biol. 23: 1211–1221.

    Article  PubMed  Google Scholar 

  • Sakai A, Larcher W (1987)-Frost Survival of Plants. Springer Verlag, Berlin.

    Book  Google Scholar 

  • Schaffer M A, Fischer R L (1988) Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease gene in tomato.-Plant Physiol. 87: 431–436.

    Article  PubMed  CAS  Google Scholar 

  • Sieg F, Schroder W, Hincha D (1996) Purification and characterization of a cryoprotective protein (cryopro-tectin) from leaves of cold acclimated cabbage.-Plant Physiol. 111: 215–221.

    PubMed  CAS  Google Scholar 

  • Steponkus P L, Uemura M, Webb M S (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat: Two species that widely differ in their freezing tolerance and plasma membrane lipid composition.-In: Advances in Low Temperature Biology (Steponkus P L ed.) pp. 211–313. London, UK, JAI Press.

    Google Scholar 

  • Steponkus P L, Lynch D V (1989) Freeze-thaw-induced destabilization of the plasma membrane and the effects of cold acclimation.-J. Bioenerg. Biomembr. 21: 21–41.

    Article  PubMed  CAS  Google Scholar 

  • Sukumaran N P, Weiser C J (1972) An excised leaflet test for evaluating potato frost tolerance.-Hort. Science. 7: 467–468.

    Google Scholar 

  • Thomashow M F (1993) Genes induced during cold acclimation in higher plants.-In: Advances in Low Temperature Biology (Steponkus P L ed.) pp. 807–834. London, UK, JAI Press.

    Google Scholar 

  • Trewavas A, Gilroy S (1991) Signal transduction in plant cells.-Trends Genet. 7: 356–361.

    PubMed  CAS  Google Scholar 

  • Uemura M, Gilmour S J, Thomashow M F, Steponkus P L (1996) Effects of COR6.6 and COR15AM polypep-tides encoded by cor (cold regulated) genes in Arabidopsis thaliana on the freeze induced fusion and leakage of liposomes. Plant Physiol. 111: 313–327.

    Article  PubMed  CAS  Google Scholar 

  • van Berkel J, Salamini F, Gebhardt C (1994) Transcripts accumulating during cold storage of potatoe (Solanum tuberosum L.) tubers are sequence related to stress responsive genes.-Plant Physiol. 104: 445–452.

    Article  PubMed  Google Scholar 

  • Vilardell J, Goday A, Freire M A, Torrent M, Martinez M C, Torne J M, Pages M (1990) Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize.-Plant Mol. Biol. 14: 423–432.

    Article  PubMed  CAS  Google Scholar 

  • Volger H G, Heber U (1975) Cryoprotective leaf proteins.-Biochim. Biophys. Acta 412: 335–349

    Article  PubMed  CAS  Google Scholar 

  • Vuorio O E, Kalkkinen N, Londesborough J (1993) Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast saccharomyces cerevisiae.-Eur. J. Biochem. 216: 849–861.

    Article  PubMed  CAS  Google Scholar 

  • Weiser C J (1970) Cold resistance and injury in wooded plants.-Science 169: 1269–1278.

    Article  PubMed  CAS  Google Scholar 

  • Welin B V, Olson Å, Nyländer M, Palva E T (1994) Characterization and differential expression of dhnllea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana.-Plant Mol. Biol. 26: 131–144.

    Article  PubMed  CAS  Google Scholar 

  • Welin B V, Olson Å, Palva ET (1995) Stucture and organization of two closely related low-temperature-induced dhnllea/rab-like genes in Arabidopsis thaliana L. Heynh.-Plant Mol. Biol. 29: 391–395.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high salt stress.-Plant Cell 6: 251–264.

    PubMed  CAS  Google Scholar 

  • Yancey P H, Clark M E, Hand S C, Bowlus R D, Somero G N (1982) Living with water stress: evolution of os-molyte systems.-Science 217: 1214–1222.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Dunn M A, Pearce R S, Hughes M A (1993) Analysis of organ specificity of a low temperature responsive gene family in rye (Secale cereale L.).-J. Exp. Bot. 44: 1789–1793.

    Google Scholar 

  • Zhu, BL, Chen T H H, Li P H (1993) Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii.-Plant Mol. Biol. 21: 729–735.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palva, E.T., Heino, P. (1997). Molecular Mechanism of Plant Cold Acclimation and Freezing Tolerance. In: Li, P.H., Chen, T.H.H. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0277-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0277-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0279-5

  • Online ISBN: 978-1-4899-0277-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics