Advertisement

Soil Invertebrate Species Diversity and Abundance in Endophyte-Infected Tall Fescue Pastures

  • E. C. Bernard
  • K. D. Gwinn
  • C. D. Pless
  • C. D. Williver

Abstract

The reduced ability of many herbivorous insects and nematodes to subsist on grasses infected by endophytic fungi is well-documented (Clay, 1989;1991). These effects upon insects are mostly due to the presence of a diverse array of alkaloids and other compounds produced by the fungus-grass symbiosis (Garner et al., 1993; Rottinghaus et al., 1991) but the mechanisms that account for nematode resistance have not yet been elucidated. Despite much research devoted to single-species herbivory on endophyte-infected grasses, little effort has yet been made to understand effects of such symbioses on soil invertebrate communities. The purpose of this review is to analyze recent progress made in the understanding of the role of the endophyte (Neotyphodium coenophialum)-tall fescue (Festuca arundinacea) symbiosis in regulation of invertebrate communities, and to suggest fruitful lines of research for the future. Because litter, fermentation, and mineral layers are a continuum and most soil arthropods move within this continuum (Eisenbeis and Wichard, 1987), “soil invertebrates” is used in the broad sense to include surface-dwelling arthropods.

Keywords

Endophytic Fungus Tall Fescue Ground Beetle Oribatid Mite Soil Nematode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asteraki, E. J., C. B. Hanks, and R. O. Clements. 1995. The influence of different types of grassland field margin on carabid beetle ( Coleoptera, Carabidae) communities. Agric. Ecosys. Environ. 54: 195–202.Google Scholar
  2. Azevedo, M. D. and R. E. Welty. 1995. A study of the fungal endophyte Acremonium coenophialum in the roots of tall fescue seedlings. Mycologia 87: 289–297.CrossRefGoogle Scholar
  3. Belesky, D. P., J. D. Robbins, J. A. Stuedemann, S. R. Wilkinson, and O. J. Devine. 1987. Fungal endophyte infection - Loline derivative alkaloid concentration of grazed tall fescue. Agron. J. 79: 217–220.Google Scholar
  4. Belesky, D. P., J. A. Stuedemann, R. D. Plattner, and S. R. Wilkinson. 1988. Ergopeptine alkaloids in grazed tall fescue. Agron. J. 80: 209–212.Google Scholar
  5. Bernard, E. C., A. M. Cole, J. B. Oliver, and K. D. Gwinn. 1990. Survival and fecundity of Folsomia candida (Collembola) fed tall fescue tissues or ergot peptide-amended yeast. p. 125–127. In S. S. Quisenberry and R. E. Joost (eds.). Proc. Internat. Symp. Acremonium/Grass Interactions. Louisiana Agricultural Experiment Station, Baton Rouge.Google Scholar
  6. Bernard, E. C., K. D. Gwinn, and G. D. Griffin. 1997. Forage grasses. In G. A. Pederson et al., eds. Plant/nematode interactions. Agronomy Society of America Monograph (In Press).Google Scholar
  7. Brussaard, L., J. P. Kools, L. A. Bouwman, and P. C. de Ruiter. 1991. Population dynamics and nitrogen mineralization rates in soil as influenced by bacterial grazing nematodes and mites. p. 517–523 In G. K. Veeresh, D. Rajagopal, and C. A. Viraktamath (eds.). Advances in management and conservation of soil fauna. Oxford and 1BH Publishing, New Delhi.Google Scholar
  8. Bultman, T. L. and R. L. Mathews. 1996. Mycophagy by a millipede and its possible impact on an insect-fungus mutualism. Oikos 75: 67–74.CrossRefGoogle Scholar
  9. Bush, L. P., F. F. Fannin, M. R. Siegel, D. L. Dahlman, and H. R. Burton. 1993. Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte-grass interactions. Agric. Ecosys. Environ. 44: 88–102.Google Scholar
  10. Butcher, J. W., R. Snider, and R. J. Snider. 1971. Bioecology of edaphic Collembola and Acarina. Ann. Rev. Entomol. 16: 249–288.Google Scholar
  11. Clay, K. 1989. Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycol. Res. 92: 1–12.Google Scholar
  12. Clay, K. 1991. Fungal endophytes, grasses, and herbivores. p. 199–226. In P. Barbosa, V. A. Krischik, and C. G. Jones (eds.). Microbial remediation of plant-herbivore interactions. John Wiley and Sons, New York.Google Scholar
  13. Clay, K. 1994. The potential role of endophytes in ecosystems. p. 73–86. 1n C. W. Bacon and J. F. White, Jr. (eds.). Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, FL.Google Scholar
  14. Crossley, D. A., Jr., and J. M. Blair. 1991. A high-efficiency, “low-technology” Tullgren-type extractor for soil microarthropods. Agric. Ecosys. Environ. 34: 187–192.Google Scholar
  15. Eisenbeis, G. and W. Wichard. 1987. Atlas on the biology of soil arthropods. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  16. Freckman, D. W. 1988. Bacterivorous nematodes and organic-matter decomposition. Agric. Ecosys. Environ. 24: 195–217.Google Scholar
  17. Garner, G. B., G E. Rottinghaus, C. N. Cornell, and H. Testereci. 1993. Chemistry of compounds associated with endophyte/grass interaction: ergovaline-and ergopeptine-related alkaloids. Agric. Ecosys. Environ. 44: 65–80.Google Scholar
  18. Glenn, A. E., C. W. Bacon, R. Price, and R. T. Hanlin. 1996. Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88: 369–383.CrossRefGoogle Scholar
  19. Griffin, G. D., E. C. Bernard, G. A. Pederson, G. L. Windham, K. H. Quesenberry, and R. A. Dunn. 1996. Nematode pathogens of American pasture/forage crops. p. 257–286. /n S. Chakraborty, K. T. Leath, R. A. Skipp, G. A. Pederson, R. A. Bray, G. C. M. Latch, and F. W. Nutter, Jr (eds.). Pasture and forage crop pathology. ASA/CSSA/SSSA, Madison, WI.Google Scholar
  20. Gwinn, K. D. and E. C. Bernard. 1993. Interactions of endophyte-infected grasses with the nematodes Meloidogyne marylandi and Pratylenchusscribneri. p. 156–160. In D. E. Hume, G. C. M. Latch, and H. S. Easton (eds.). Proc. Second Internat. Symp. Acremonium/Grass Interactions. Palmerston North, New Zealand.Google Scholar
  21. Hance, T., C. Grégoire-Wibo, and P. Lebrun. 1990. Agriculture and ground beetle populations. The consequence of crop types and surrounding habitats on activity and species composition. Pedobiologia 34: 337–346.Google Scholar
  22. Hasegawa, M. and H. Takeda. Changes in feeding attributes of four collembolan populations during the decomposition process of pine needles. Pedobiologia 39: 155–169.Google Scholar
  23. Hendrix, P. F., R. W. Parmelee, D. A. Crossley, Jr., D. C. Coleman, E. P. Odum, and P. M. Groffman. 1986. Detritus food webs in conventional and no-tillage agroecosystems. Bioscience 36: 374–380.CrossRefGoogle Scholar
  24. Hunt, H. W., D. C. Coleman, E. R. Ingham, R. E. Ingham, E. T. Elliott, J. C. Moors, S. L. Rose, C. P. P. Reid, and C. R. Morley. 1987. The detrital food web in a shortgrass prairie. Biol. Fertil. Soils 3: 57–68.Google Scholar
  25. Hylton, C. D., Jr., C. D. Pless, and N. B. Shamiyeh. 1985. East Tennessee tobacco fields support large populations of potentially beneficial ground beetles. Tenn. Farm Home Sci. 133: 11–15.Google Scholar
  26. Ingham, R. E. and J. K. Detling. 1984. Plant-herbivore interactions in a North American mixed-grass prairie III. Soil nematode populations and root biomass on Cynomys ludovicianus colonies and adjacent uncolonized areas. Oecologia (Berlin) 63: 307–313.CrossRefGoogle Scholar
  27. Ingham, R. E. and J. K. Detling. 1990. Effects of root-feeding nematodes on aboveground net primary production in a North American grassland. Plant Soil 121: 279–281.CrossRefGoogle Scholar
  28. Ingham, R. E., J. A. Trofymow, E. R. Ingham, and D. C. Coleman. 1985. Interactions of bacteria, fungi, and their nematode grazers: Effects on nutrient cycling and plant growth. Ecol. Monog. 55: 119–140.Google Scholar
  29. Jackson, J. A., Jr., R. W. Hemken, J. A. Boling, R. J. Harmon, R. C. Buckner, and L. P. Bush. 1984. Loline alkaloids in tall fescue hay and seed and their relationship to summer fescue toxicosis in cattle. J. Dairy Sci. 67: 104–109.PubMedCrossRefGoogle Scholar
  30. Killham, K. 1994. Soil ecology. Cambridge University Press, Cambridge, UK.Google Scholar
  31. Kimmons, C.A., K.D. Gwinn, and E.C. Bernard. 1990. Nematode reproduction on endophyte-infected and endophyte-free tall fescue. Plant Dis. 74: 757–761.CrossRefGoogle Scholar
  32. Kirkpatrick, T. L., J. D. Barham, and J. R. Bateman. 1990. Host status for Meloidogyne graminis of tall fescue selections and clones with and without the endophyte Acremonium coenophialum. p. 154–156. In R. Joost and S. Quisenberry (eds.). Proc. Int. Symp. Acremonium/Grass Interactions. 5–7 Nov. 1990. Louisiana State University, Baton Rouge, LA.Google Scholar
  33. Lee, K. E. and C. E. Pankhurst. 1992. Soil organisms and sustainable productivity. Austral. J. Soil. Res. 30: 855–892.Google Scholar
  34. Lee, Q. and P. Widden. 1996. Folsomia candida, a “fungivorous” collembolan, feeds preferentially on nematodes rather than soil fungi. Soil Biol. Biochem. 28: 689–690.Google Scholar
  35. Lys, J.-A. 1994. The positive influence of strip-management on ground beetles in a cereal field: increase, migration and overwintering. p. 451–455. In K. Desender (ed.). Carabid beetles: ecology and evolution. Kluwer Academic Publishers, Amsterdam.CrossRefGoogle Scholar
  36. Moore, J. C. and P. C. de Ruiter. 1991. Temporal and spatial heterogeneity of trophic interactions within below-ground food webs. Agric. Ecosys. Environ. 34: 371–397.Google Scholar
  37. Moore, J. C., D. E. Walter, and H. W. Hunt. 1988. Arthropod regulation of micro-and mesobiota in below-ground detrital food webs. Ann. Rev. Entomol. 33: 419–439.Google Scholar
  38. Morrill, W. L. 1992. Ground beetles ( Coleoptera: Carabidae) in Georgia. J. Agric. Entomol. 9: 179–188.Google Scholar
  39. O’Day, M. H., W. C. Bailey, and T. L. Niblack. 1990. Phytonematode communities in tall fescue varieties with varying levels of endophyte (Acremonium coenophialum) infection. p. 163–169. In R. Joost and S. Quisenberry (eds.). Proc. Int. Symp. Acremonium/Grass Interactions. 5–7 Nov. 1990. Louisiana State University, Baton Rouge, LA.Google Scholar
  40. Oliver, J. B., C. D. Pless, and K. D. Gwinn. 1990. Effect of endophyte, Acremonium coenophialum, in “Kentucky 31” tall fescue, Festuca arundinacea, on survival of Popillia japonica. p. 173–175. In S. S. Quisenberry and R. E. Joost (eds.). Proc. Internat. Symp. Acremonium/Grass Interactions. Louisiana Agricultural Experiment Station, Baton Rouge.Google Scholar
  41. Popay, A. J., R. A. Mainland, and C. J. Saunders. 1993. The effect of endophytes in fescue grass on growth and survival of third instar grass grub larvae. p. 174–176. In D. E. Hume, G. C. M. Latch, and H. S. Easton (eds.). Proc. Second Internat. Symp. Acremonium/Grass Interactions. Palmerston North, New Zealand.Google Scholar
  42. Reddell, J. R. 1983. A checklist and bibliography of the Japygoidea (Insecta: Diplura) of North America, Central America, and the West Indies. Occas. Pub. No. 37, Pearce-Sellard Series, Texas Memorial Museum, Austin.Google Scholar
  43. Rottinghaus, G. E., G. B. Garner, C. N. Cornell, and J. B. Ellis. 1991. HPLC method for quantitating ergovaline in endophyte-infested tall fescue: seasonal variation of ergovaline levels in stems with leaf sheaths, leaf blades, and seed heads. J. Agric. Food. Chem. 39: 112–115.Google Scholar
  44. Sabrosky, C. W. 1935. The Chloropidae of Kansas. Trans. Amer. Entomol. Soc. 61: 207–268.Google Scholar
  45. Schmidt, S. P., C. S. Hoveland, E. M. Clark, N. D. Davis, L. A. Smith, H. W. Grimes, and J. L. Holliman. 1982. Association of an endophytic fungus with fescue toxicity in steers fed Kentucky 31 tall fescue seed or hay. J. Anim. Sci. 55: 1259–1263.Google Scholar
  46. Schulz, E. and S. Scheu. 1994. Oribatid mite mediated changes in litter decomposition: model experiments with “C-labelled holocellulose. Pedobiologia 38: 344–352.Google Scholar
  47. Siepel, H. and F. Maaskamp. 1994. Mites of different feeding guilds affect decomposition of organic matter. Soil Biol. Biochem. 26: 1389–1394.Google Scholar
  48. Siepel, H. and E. M. de Ruiter-Dijkman. 1993. Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biol. Biochem. 25: 1491–1497.Google Scholar
  49. Smolik, J. D. and J. K. Lewis. 1982. Effect of range condition on density and biomass of nematodes in a mixed ecosystem. J. Range Manag. 35:657–663.CrossRefGoogle Scholar
  50. Sohlenius, B. 1980. Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos 34: 186–194.CrossRefGoogle Scholar
  51. Strahan, S. R., R. W. Hemken, and J. A. Jackson, Jr. 1987. Performance of lactating dairy cows fed tall fescue forage. J. Dairy Sci. 70: 1228–1234.PubMedCrossRefGoogle Scholar
  52. Teuben, A. and H. A. Verhoef. 1992. Direct contribution by soil arthropods to nutrient availability through body and faecal nutrient content. Biol. Fertil. Soils 14: 71–75.Google Scholar
  53. Tilman, D. and J. A. Downing. 1994. Biodiversity and stability in grasslands. Nature 367: 363–365.CrossRefGoogle Scholar
  54. Tilman, D., D. Wedin, and J. Knops. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718–720.CrossRefGoogle Scholar
  55. Vogt, J. T. 1992. Seasonal incidence and laboratory rearing of selected chloropid flies occurring in tall fescue in Tennessee. M. S. Thesis, The University of Tennessee.Google Scholar
  56. Walter, D. E. 1987. Trophic behavior of “mycophagous” microarthropods. Ecology 68: 226–229.CrossRefGoogle Scholar
  57. Walter, D. E., J. Kethley, and J. C. Moore. 1987. A heptane flotation method for recovering microarthropods from semiarid soils, with comparison to the Merchant-Crossley high-gradient extraction method and estimates of arthropod biomass. Pedobiologia 30: 221–232.Google Scholar
  58. West, C., E. Izekor, D.M. Oosterhuis, and R.T. Robbins. 1988. The effect of Acremonium coenophialum on growth and nematode infestation of tall fescue. Plant Soil 112: 3–6.CrossRefGoogle Scholar
  59. Williver, C. L. 1996. Effects of endophyte infectionand methyl bromide on surface-dwelling and edaphic arthropods in tall fescue. M. S. Thesis, The University of Tennessee.Google Scholar
  60. Wolters, V. 1991. Soil invertebrates - Effects on nutrient turnover and soil structure - A review. Z. Pflanzenernähr. Bodenk. 154: 389–402.Google Scholar
  61. Yeates, G. W. and D. C. Coleman. 1982. Role of nematodes in decomposition. p. 55–80. In D. W. Freckman (ed.). Nematodes in soil ecosystems. University of Texas Press, Austin.Google Scholar
  62. Yeates, G. W., T. Bongers, R. G. M. de Goede, D. W. Freckman. and S. S. Georgieva. 1993. Feeding habits in soil nematode families and genera–an outline for soil ecologists. J. Nematol. 25: 315–331.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • E. C. Bernard
    • 1
  • K. D. Gwinn
    • 1
  • C. D. Pless
    • 1
  • C. D. Williver
    • 1
  1. 1.Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleUSA

Personalised recommendations