Advertisement

Microscopic Time-Reversibility and Macroscopic Irreversibility — Still a Paradox?

  • Harald A. Posch
  • Christoph Dellago
  • William G. Hoover
  • Oyeon Kum

Abstract

Microscopic time reversibility and macroscopic irreversibility are a paradoxical combination. This was first observed by J. Loschmidt in 1876 and was explained, for conservative systems, by L. Boltzmann the following year. Both these features are also present in modern simulations of classic many-body systems in steady nonequilibrium states. We illustrate them here for the simplest possible models, a continuous one-dimensional model of field-driven diffusion, the so-called driven Lorentz gas or Galton Board, and an ergodic time-reversible dissipative map.

Keywords

Lyapunov Exponent Strange Attractor Singularity Spectrum Lyapunov Spectrum Steady Nonequilibrium State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Boltzmann, Vorlesungen über Gastheorie, I. und II. Teil, Ludwig Boltzmann Gesamtausgabe, Vol. 1, Akad. Druck-und Verlagsanstalt, Graz, 1981.Google Scholar
  2. 2.
    J. Loschmidt, “Über den Zustand des Wärmegleichgewichtes eines Systems von Körpern mit Rücksicht auf die Schwerkraft,” Sitzungsber. Kais. Akad. Wiss. Wien, Mathemat. Naturwiss. Classe, II. Abt. 73, 128 (1876).Google Scholar
  3. 3.
    E. Zermelo, “Über einen Satz der Dynamik und die mechanische Wärmetheorie” Ann. Phys. 57, 485 (1896).CrossRefGoogle Scholar
  4. 4.
    L. Boltzmann, Sitzungsber. Kais. Akad. Wiss. Wien, Mathemat. Naturwiss. Classe, II. Abt. 75, 67 (1877).Google Scholar
  5. English translation: S. G. Brush, Kinetic Theory, Vol. 2, Irreversible Processes (Pergamon, Oxford, 1966), p. 188.Google Scholar
  6. 5.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).Google Scholar
  7. 6.
    H. A. Posch, H. Narnhofer, and W. Thirring, “Externally perturbed unstable systems,” J. Stat. Phys. 65, 555 (1991).CrossRefGoogle Scholar
  8. 7.
    W. G. Hoover, “Temperature, least action, and Lagrangian mechanics,” Phys. Lett. A 204, 133 (1995).CrossRefGoogle Scholar
  9. 8.
    D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, and A. J. C. Ladd, “Nonequilibrium molecular dynamics via Gauss’s principle of least action,” Phys. Rev. A 28, 1016 (1983).Google Scholar
  10. 9.
    D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).Google Scholar
  11. 10.
    W. G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).Google Scholar
  12. 11.
    B. L. Holian, W. G. Hoover, and H. A. Posch, “Resolution of Loschmidt’s paradox: The origin of irreversible behavior in reversible atomistic dynamics,” Phys. Rev. Lett. 59, 10 (1987).CrossRefGoogle Scholar
  13. 12.
    H.A. Posch, W. G. Hoover, and B. L. Holian, “Time-reversible molecular motion and macroscopic irreversibility,” Ber. Bunsenges. Phys. Chem. 94, 250 (1990).CrossRefGoogle Scholar
  14. 13.
    J. D. Farmer, E. Ott, and J. A. Yorke, “The dimension of chaotic attractors,” Physica D 7, 153 (1983).Google Scholar
  15. 14.
    N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, “Steady-state electrical conduction in the periodic Lorentz gas,” Comm. Math. Phys. 154, 569 (1993).CrossRefGoogle Scholar
  16. 15.
    W. N. Vance, “Unstable periodic orbits and transport properties of nonequilibrium steady states,” Phys. Rev. Lett. 69, 1356 (1992).CrossRefGoogle Scholar
  17. 16.
    W. G. Hoover and B. Moran, “Phase-space singularities in atomistic planar diffusive flow,” Phys. Rev. A 40, 5319 (1989).Google Scholar
  18. 17.
    B. Moran, W. G. Hoover, and S. Bestiale, “Diffusion in a periodic Lorentz gas,” J. Stat. Phys. 48, 709 (1987).CrossRefGoogle Scholar
  19. 18.
    N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, “Derivation of Ohm’s law in a deterministic mechanical model,” Phys. Rev. Lett. 70, 2209 (1993).CrossRefGoogle Scholar
  20. 19.
    Ch. Dellago, L. Glatz, and H. A. Posch, “Lyapunov spectrum of the driven Lorentz gas,” Phys. Rev. E 52, 4817 (1995).Google Scholar
  21. Ch. Dellago and H. A. Posch, “Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: Numerical simulations,” Phys. Rev. Lett. 78, 211 (1997).CrossRefGoogle Scholar
  22. 20.
    Ch. Dellago, H. A. Posch, and W. G. Hoover, “Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states,” Phys. Rev. E 53, 1485 (1996).CrossRefGoogle Scholar
  23. Ch. Dellago, H. A. Posch, and W. G. Hoover, “Kolmogorov-Sinai entropy and Lyapunov spectra of a hard-sphere gas,” Physica A 240, 68 (1997).Google Scholar
  24. 21.
    W. G. Hoover, O. Kum, and H. A. Posch, “Time-reversible dissipative ergodic maps,” Phys. Rev. E 53, 2123 (1996).Google Scholar
  25. 22.
    J. Machta and R. Zwanzig, “Diffusion in a periodic Lorentz gas,” Phys. Rev. Lett. 50, 1959 (1983).CrossRefGoogle Scholar
  26. 23.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, “Fractal measures and their singularities: The characterization of strange sets,” Phys. Rev. A 33, 1141 (1986).Google Scholar
  27. 24.
    A. B. Chhabra and R. V. Jensen, “Direct determination of the f (α) singularity spectrum,” Phys. Rev. Lett. 62, 1327 (1989).CrossRefGoogle Scholar
  28. 25.
    J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors,” Rev. Mod. Phys. 57, 617 (1985).CrossRefGoogle Scholar
  29. 26.
    H. A. Posch and W. G. Hoover, “Lyapunov instability of dense Lennard-Jones fluids,” Phys. Rev. A 38, 473 (1988).Google Scholar
  30. 27.
    P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica 9D, 189 (1983).Google Scholar
  31. 28.
    W. N. Vance, unpublished.Google Scholar
  32. 29.
    R. Illner and H. Neunzert, “The concept of irreversibility and statistical physics,” Transport Theory and Statistical Physics 16(1), 89 (1987).CrossRefGoogle Scholar
  33. 30.
    J. A. G. Roberts and G. R. W. Quispel, “Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems,” Physics Reports 216, 63 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Harald A. Posch
    • 1
  • Christoph Dellago
    • 1
  • William G. Hoover
    • 2
  • Oyeon Kum
    • 2
  1. 1.Institute for Experimental PhysicsUniversity of ViennaAustria
  2. 2.Department of Physics Lawrence Livermore National Laboratory and Department of Applied ScienceUniversity of California at Davis/LivermoreLivermoreUSA

Personalised recommendations