Visualization and Nanomanipulation of Molecules in the Scanning Tunnelling Microscope

  • Wolfgang M. Heckl


Due to the complexity of living matter on the nanometer scale, Sir Neville Mott’s above cited prediction will be a real challenge for crossdisciplinary teamwork in physics, chemistry and biology within the next decade. More specifically, the evolving discipline of nanotechnology, today still in its infancy, will become one of the key technologies of the 21st century. Nanotechnology deals with the direct visualization, the control and the manipulation of matter on the nanometer scale, i.e. down to the size of proteins, molecules and single atoms. What is so new about this concept? Today’s technology tries to reach smaller dimensions in manufacturing (e.g. in the area of microchips and biosensors) by starting with a huge piece of matter and physically dividing it to the desired size (“scaling down”). This approach has its physical limits, for example in the wavelength of light used for lithographic structuring of integrated circuits. A radically new approach is to start from the elementary building blocks of matter, like atoms and molecules, and to assemble them piece by piece into entities with desired functionality (“scaling up”). This method is not really so new at all, in fact there are many outstanding examples in nature. For example, molecular nanomachines in the form of ribosomes in the cell of living organisms assemble proteins from amino acids through the coded information stored in the RNA. The genetic code of the DNA-double helix is translated by means of a molecular reading machine into the proteins’ language.


Scan Tunneling Microscopy Mono Layer Thermal Desorption Spectroscopy Elementary Building Block Molecular Mechanic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy, Phys.Rev.Lett. 49, 57 (1982).CrossRefGoogle Scholar
  2. 2.
    W.M. Heckl, D.P.E. Smith, G. Binnig, H. Klagges, T.W. Hänsch, J. Maddocks, Two-dimensional ordering of the DNA base guanine observed by scanning tunneling microscopy, Proc.Nat.Acad.Sci. USA 88, 8003 (1991).CrossRefGoogle Scholar
  3. 3.
    J. Freund, M. Edelwirth, P. Knöbel, W.M. Heckl, Structure determination of two-dimensional adenine crystals on graphite, Phys.Rev. B 55, 5394 (1997).Google Scholar
  4. 4.
    M.J. Allen, M. Balooch, S. Subbiah, R.J. Tench, W.S. Stekhaus, R. Balhorn, Scanning tunneling microcope images of adenine and thymine at atomic resolution, Scanning microsc. 5, 625 (1991).Google Scholar
  5. 5.
    R. Srinivasan, J.C. Murphy, R. Fainchtein, N. Pattabiraman, Electrochemical STM of condensed guanine on graphite, J.Electroanal.Chem. 312, 293 (1991).CrossRefGoogle Scholar
  6. 6.
    W.M. Heckl, Scanning tunneling microscopy and atomic force microscopy on organic and biomolecules, Thin Solid Films 210/211, 640 (1992).CrossRefGoogle Scholar
  7. 7.
    W.M. Heckl, J.F. Holzrichter, DNA base sequencing, Nonlinear Opt. 2, 231 (1992).Google Scholar
  8. 8.
    W.M. Heckl, Rastertunnelmikroskopie an zweidimensionalen Kristallen aus organischen Molekülen, Sektion Physik, Ludwig-Maximilians-Universität, München 1993.Google Scholar
  9. 9.
    N.J. Tao, T. Shi, Monolayer guanine and adenine on graphite in NaCl solution: a comparative STM and AFM study, J.Phys.Chem. 98, 1464 (1994).CrossRefGoogle Scholar
  10. 10.
    S.J. Sowerby, W.M. Heckl, G.B. Petersen, Chiral symmetry breaking during the self-assembly of monolayers from achiral purine molecules, J.Mol.Evol. 43, 419 (1996).CrossRefGoogle Scholar
  11. 11.
    T. Wandlowski, M.H. Hölzle, Adsorption of 1,3-dimethyluracil at the Au(111)/aqueous electrolyte interface, a chronocoulometric study, Langmuir 12, 6597 (1996).CrossRefGoogle Scholar
  12. 12.
    S.J. Sowerby, W.M. Heckl, The role of self-assembled monolayers of the purine and pyrimidine bases in the origin of life, Orig.Life Evol.Biosphere (accepted).Google Scholar
  13. 13.
    S.J. Sowerby, G.B. Petersen, Scanning tunneling microscopy of uracil monolayers self-assembled at the solid/liquid interface, J.Electroanal.Chem. (in press).Google Scholar
  14. 14.
    W. Saenger, Principles of nucleic acid structure, Springer, New York 1984.CrossRefGoogle Scholar
  15. 15.
    M. Edelwirth, W.M. Heckl, Molecular mechanics simulation of adenine on graphite, Chem.Phys.Lett. (submitted).Google Scholar
  16. 16.
    S.J. Sowerby, M. Edelwirth, et al., Molecular mechanics simulation of uracil adlayers on molybdenum disulfide and graphite surfaces, Appl.Phys. A(submitted).Google Scholar
  17. 17.
    R. Guckenberger, M. Heim, G. Cevc, H.F. Knapp, W. Wiegräbe, A. Hillebrand, Scanning tunneling microscopy of insulators and biological specimens based on lateral conductivity of ultrathin water films, Science 266, 1538 (1994).CrossRefGoogle Scholar
  18. 18.
    H. Ohtani, R.J. Wilson, S. Chiang, C.M. Mate, Scanning tunneling miocroscopy observations of benzene molecules on the Rh(111) — (3×3)(C6H6 + 2 CO) surface, Phys.Rev.Lett. 60, 2398 (1988).CrossRefGoogle Scholar
  19. 19.
    S. Thalhammer, R.W. Stark, S. Müller, J. Wienberg, W.M. Heckl, The atomic force microscope as a new microdissecting tool for the generation of genetic probes, J.Struct.Biology 119, 232 (1997).CrossRefGoogle Scholar
  20. 20.
    W.M. Heckl, J. Maddocks, Smallest hole in the world, Guinness Book of Records, Ullstein, Berlin 1994.Google Scholar
  21. 21.
    S.J. Sowerby, M. Reiter, et al, Single molecule diffusion observed with STM, Ann.Physik (to be published).Google Scholar
  22. 22.
    P. Cole, Nanomanipulation von reinen und adsorbatbedeckten MoS2-, Graphit-und Goldoberflächen mittels Rastertunnelmikroskopie, Institut für Kristallographie und Angewandte Mineralogie, Ludwig-Maximilians-Universität, München 1996.Google Scholar
  23. 23.
    P. Cole, M. Reiter, et. al., Molecular writing with STM, to be published.Google Scholar
  24. 24.
    N.J. Tao, J.A. DeRose, S.M. Lindsay, Self-assembly of molecular superstructures studied by in-situ tunneling microscopy: DNA bases on Au(111), J.Phys.Chem. 97, 910 (1993).CrossRefGoogle Scholar
  25. 25.
    T. Dretschkow, A.S. Dakkouri, T. Wandlowski, In-situ scanning tunneling microscopy study of uracil on Au(111) and Au(100), Langmuir 13, 2843 (1997).CrossRefGoogle Scholar

Further Reading

  1. R. Colton, et al., Procedures in scanning probe microscopies, Wiley—VCH, Chichester 1997.Google Scholar
  2. W.M. Heckl, Scanning the thread of life: DNA under the microscope, in: E.P. Fischer. S. Klose (Eds.), The human genome, R. Piper, München 1995, pp. 137-145.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Wolfgang M. Heckl
    • 1
  1. 1.Institute for CrystallographyApplied Mineralogy UniversityMunichGermany

Personalised recommendations