Advertisement

Scanning Tunneling Microscopy Study of Single Pb Atom Diffusion on Si(111)7×7 and Si(111)5×5 Surfaces

  • J. M. Gómez-Rodríguez
  • J.-Y. Veuillen
  • A. M. Baró
  • R. C. Cinti
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

The diffusion of single Pb atoms on Si(111)7×7 and Si(111)5×5 surfaces has been investigated in real time by scanning tunneling microscopy (STM). The STM results show that single Pb atoms are highly mobile at room temperature inside (7×7) or (5×5) half-cells but diffuse at very low rates to neighbor half-cells.

Keywords

Scanning Tunneling Microscopy Single Atom Semiconductor Surface Atom Diffusion Scanning Tunneling Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.L. Kellog, Surf. Sci. Rep. 21, 88 (1994).Google Scholar
  2. 2.
    R.M. Feenstra, A.J. Slavin, G.A. Held, and M.A. Lutz, Phys. Rev. Lett. 66, 3257 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    S. Kitamura, T. Sato, and M. Iwatsuki, Nature 351, 215 (1991).ADSCrossRefGoogle Scholar
  4. 4.
    E. Ganz, S.K. Theiss, I.S. Hwang, and J. Golovchenko, Phys. Rev. Lett. 68, 1567 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    I.S. Hwang, S.K. Theiss, and J. Golovchenko, Science 265, 490 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    Y.W. Mo, Phys. Rev. Lett. 69, 3643 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    Y.W. Mo, Phys. Rev. Lett. 71, 2923 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    N. Kitamura, M.G. Lagally, and M.B. Webb, Phys. Rev. Lett. 71, 2082 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Zhang, F. Wu, H.J.W. Zandvliet, B. Poelsema, H. Metiu, and M.G. Lagally, Phys. Rev. Lett. 74, 3644 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    C. Pearson, B. Borovsky, M. Krueger, R. Curtis, and E. Ganz, Phys. Rev. Lett. 74, 2710 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    B.S. Swartzentruber, Phys. Rev. Lett. 76, 459 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Gómez-Rodríguez, J.J. Sáenz, A.M. Baró, J.-Y. Veuillen, and R.C. Cinti, Phys. Rev. Lett. 76, 799 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    J.M. Gómez-Rodríguez, J.-Y. Veuillen, and R.C. Cinti, J. Vac. Sci. Technol. B 14, 1005 (1996).CrossRefGoogle Scholar
  14. 14.
    J.M. Gómez-Rodríguez, J.-Y. Veuillen, and R.C. Cinti, Surf. Rev. Lett. (in press).Google Scholar
  15. 15.
    K. Takayanagi, Y. Tanishiro, S. Takahashi and M. Takahashi, Surf. Sci. 164, 367 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    R.S. Becker, B.S. Swartzentruber, J.S. Vickers, and T. Klitsner, Phys. Rev. B 39, 1633 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    E. Kaxiras and J. Erlebacher, Phys. Rev. Lett. 72, 1714 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    D.C. Sorescu, D.L. Thompson and L.M. Raff, J. Chem. Phys. 101, 16384 (1994).Google Scholar
  19. 19.
    A. Vittadini and A. Selloni, Phys. Rev. Lett. 75, 4756 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. M. Gómez-Rodríguez
    • 1
  • J.-Y. Veuillen
    • 2
  • A. M. Baró
    • 1
  • R. C. Cinti
    • 2
  1. 1.Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain
  2. 2.Laboratoire d’Etudes des Propriétés Electroniques des SolidesCNRSGrenoble, Cédex 9France

Personalised recommendations