Thermal Fluctuations in Equilibrium and Their Modification by Surface Defects

  • H. Pfnür
Part of the NATO ASI Series book series (NSSB, volume 360)


Thermally activated processes like temperature-dependent changes of sites and the mapping of phase diagrams give essential information about the energy differences between sites and about lateral interactions. We show examples of atomic adsorbates (H, O, S) on close packed Ni(111) and Ru(0001) surfaces investigated quantitatively with LEED. The information about lateral correlations of critical fluctuations contained in spot profiles close to a continuous phase transition is illustrated in the example of the order-disorder transition of (√3×√3)R 30° -Au/Si(111). Here the critical exponents β, γ and ν of the order parameter, the susceptibility and the correlation length were determined for the unique situation of thermal equilibrium between 3-dimensional gold islands and the 2-dimensional (√3×√3)R 30° phase, and shown to belong to the 3-state Potts universality class. Impurity induced changes of phase diagrams and, more severely, of critical properties of continuous phase transitions in two-dimensional systems are exemplified by adsorbed atomic hydrogen on Ni(111). Although strongly chemisorbed, the phase diagram of this system is sensitive to isotopic mixtures. Finite energies of mixing and changes of the order-disorder phase transition of the (2 × 2) phase from continuous to first order were found. The critical properties of this order-disorder transition are changed by the presence of preadsorbed oxygen concentrations of 0.3% to 3% of a monolayer. The result is a crossover from 4-state Potts exponents far away from T c to Ising-like exponents closer to T c .


Phase Diagram Correlation Length Critical Exponent Lateral Interaction Universality Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. N. J. Persson, Surf. Sci. Rep. 15, 1 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    E. Bauer, in Topics in Current Physics, W. Schommers and P. von Blanckenhagen, eds., Springer, Berlin, Heidelberg, 1987, Vol. 43, p. 115.Google Scholar
  3. 3.
    K. Binder and D. P. Landau, in Molecule-Surface Interaction, K. Lawley, ed., Wiley, New York, 1989, p. 91.Google Scholar
  4. 4.
    J. Stöhr in: X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, D.C. Koningsberger and R. Prins, eds., Wiley, New York, 1988, p. 443.Google Scholar
  5. 5.
    D.P. Woodruff, Surf. Sci. 299/300, 183 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    D.K. Saldin, J.B. Pendry, M.A. Van Hove and D.A. Somorjai, Phys. Rev. B 31, 1216 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    U. Starke, PL. de Andres, D.K. Saldin, K. Heinz, and J.B. Pendry, Phys. Rev. B 38, 12277 (1988).ADSCrossRefGoogle Scholar
  8. P. Hu, C.J. Barnes, and D.A. King, Phys. Rev. B 45, 13595 (1992).ADSCrossRefGoogle Scholar
  9. H. Wedler, M.A. Mendez, P. Bayer, U. Löffler, K. Heinz, V. Fritsche and J.B. Pendry, Surf. Sci. 293, 47 (1993).ADSCrossRefGoogle Scholar
  10. 8.
    M. Schick, Prog. Surf. Sci. 11, 245 (1981).ADSCrossRefGoogle Scholar
  11. 9.
    H. Pfnür and P. Piercy, Phys. Rev. B 40, 2515 (1989).ADSCrossRefGoogle Scholar
  12. 10.
    M. Sokolowski and H. Pfnür, Phys. Rev. B 49, 7626 (1994).ADSCrossRefGoogle Scholar
  13. 11.
    M. Sokolowski and H. Pfnür, Phys. Rev. Lett. 63, 183 (1989).ADSCrossRefGoogle Scholar
  14. 12.
    M. Sokolowski, H. Pfnür, and M. Lindroos, Surf. Sci. 278, 87 (1992).ADSCrossRefGoogle Scholar
  15. 13.
    C. Schwennicke, M. Sandhoff, W. Sklarek, D. Jürgens, and H. Pfnür, Phys. Rev. B 52, 2138 (1995).ADSCrossRefGoogle Scholar
  16. 14.
    C. Schwennicke, C. Voges, and H. Pfnür, Surf. Sci. 349, 185 (1996).ADSCrossRefGoogle Scholar
  17. 15.
    E. Schmidtke, C. Schwennicke, and H. Pfnür, Surf. Sci. 312, 301 (1994).ADSCrossRefGoogle Scholar
  18. 16.
    J.B. Pendry, J. Phys. C 13, 937 (1980).ADSCrossRefGoogle Scholar
  19. 17.
    C. Schwennicke and H. Pfnür, to be published.Google Scholar
  20. 18.
    P. Piercy, K. De’Bell, and H. Pfnür, Phys. Rev. B 45, 1869 (1992).ADSCrossRefGoogle Scholar
  21. 19.
    R. Dennert, M. Sokolowski, and H. Pfnür, Surf. Sci. 271, 1 (1992).ADSCrossRefGoogle Scholar
  22. 20.
    M. Sokolowski, T. Koch and H. Pfnür, Surf. Sci. 243, 261 (1991).ADSCrossRefGoogle Scholar
  23. 21.
    M. Sandhoff, H. Pfnür, and H.-U. Everts, Surf. Sci. 280, 185 (1993).ADSCrossRefGoogle Scholar
  24. 22.
    M. Sandhoff, H. Pfnür, and H.-U. Everts, Europhys. Lett. 25, 105 (1994), and to be published.ADSCrossRefGoogle Scholar
  25. 23.
    C. Schwennicke and H. Pfnür, Surf. Sci., in press.Google Scholar
  26. 24.
    T.L. Einstein in: Handbook of Surface Science, Vol.2, W.N. Unertl, ed., Elsevier, New York 1996.Google Scholar
  27. 25.
    K. Christmann, R. J. Behm, G. Ertl, M. A. Van Hove, and W. H. Weinberg, J. Chem. Phys. 70, 5039 (1979).CrossRefGoogle Scholar
  28. 26.
    C. Voges and H. Pfnür, Surf. Sci. 338, L839 (1995).ADSCrossRefGoogle Scholar
  29. 27.
    T. L. Einstein, M. S. Daw, and S. M. Foiles, Surf. Sci. 227, 114 (1990).ADSCrossRefGoogle Scholar
  30. 28.
    H. Wiechert, Physica B 169 (1991) 144.ADSCrossRefGoogle Scholar
  31. 29.
    S. Ino, in Reflection High Energy Electron Diffraction and Reflection Electron Imaging of Surfaces, P. K. Larsen and P. J. Dobson, eds., Plenum Publishing Corporation, New York 1988.Google Scholar
  32. 30.
    J. Falta, A. Hille, D. Novikov, G. Materlik, L. Seehofer, G. Falkenberg, and R. L. Johnson, Surf. Sci. 330, L673 (1995).CrossRefGoogle Scholar
  33. 31.
    T. Nagao and S. Hasegawa, to be published.Google Scholar
  34. 32.
    M. E. Fisher, Phys. Rev. 176, 257 (1968).ADSCrossRefGoogle Scholar
  35. 33.
    S. Hasegawa, Y. Nagai, T Oonishi, and S. Ino, Phys. Rev. B 47, 9903 (1993).ADSCrossRefGoogle Scholar
  36. 34.
    N. C. Bartelt, T. L. Einstein, and L. Roelofs, Phys. Rev. B 32, 2993 (1985).ADSCrossRefGoogle Scholar
  37. 35.
    P. M. Horn, R. J. Birgeneau, P. Heiney, and E. M. Hammonds, Phys. Rev. Lett. 41, 961 (1978).ADSCrossRefGoogle Scholar
  38. 36.
    C. Schwennicke, C. Voges, and H. Pfnür, Surf. Sci. 349, 185 (1996).ADSCrossRefGoogle Scholar
  39. 37.
    C. Schwennicke and H. Pfnür, to be published.Google Scholar
  40. 38.
    L. Schwenger, K. Budde, C. Voges, and H. Pfnür, Phys. Rev. Lett. 73, 296 (1994).ADSCrossRefGoogle Scholar
  41. 39.
    K. Budde, L. Schwenger, C. Voges, and H. Pfnür, Phys. Rev. B 52, 9275 (1995).ADSCrossRefGoogle Scholar
  42. 40.
    A. B. Harris, J. Phys. C 7, 1671 (1974).ADSCrossRefGoogle Scholar
  43. 41.
    D. Matthews-Morgan, D. P. Landau, and H. Swendsen, Phys. Rev. Lett. 53, 679 (1984).ADSCrossRefGoogle Scholar
  44. 42.
    M. A. Novotny and D. P. Landau, Phys. Rev. B 24, 1568 (1981).ADSCrossRefGoogle Scholar
  45. 43.
    M. A. Novotny and D. P. Landau, Phys. Rev. B 32, 3112 (1985).ADSCrossRefGoogle Scholar
  46. 44.
    S. Chen, A.M. Ferrenberg, and D.P. Landau, Phys. Rev. Lett. 69, 1213 (1992).ADSCrossRefGoogle Scholar
  47. 45.
    I.F. Lyuksyutov and H. Pfnür, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • H. Pfnür
    • 1
  1. 1.Institut für FestkörperphysikUniversität HannoverHannoverGermany

Personalised recommendations