Advertisement

The Fluctuation Method. Past, Present, and Future

  • Robert Gomer
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

Density fluctuation autocorrelation function methods for determining the chemical diffusion coefficients of adsorbates on surfaces are described and discussed, with emphasis on the field emission method. Advantages and disadvantages are pointed out, and literature references to systems studied by fluctuation methods are provided.

Keywords

Field Emission Surface Diffusion Shot Noise Current Fluctuation Chemical Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Gomer, Diffusion of adsorbates on metal surfaces, Reports on Progress in Physics 53, 917 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    M. Tringides and R. Gomer, Adsorbate-adsorbate interaction effects in surface diffusion, Surf. Sci. 265, 283 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    R. Gomer, Field emission, field ionization and field desorption, Surf. Sci. 299/300, 129 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    R. Gomer, Current fluctuations from small regions of adsorbate covered field emitters, Surf. Sci. 38, 373 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    G. Mazenko, J.R. Banavar and R. Gomer, Diffusion coefficients and the time autocorrelation function of density fluctuations, Surf. Sci. 107, 459 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    C. Uebing and R. Gomer, Determination of surface diffusion coefficients by Monte Carlo methods: Comparison of fluctuation and Kubo-Green methods, J. Chem.Phys. 100, 7759 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    D.R. Bowman, R. Gomer, K. Muttalib and M. Tringides, The determination of diffusion tensors in surface diffusion by the fluctuation method (theory), Surf. Sci. 138, 581 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    R. Gomer, Field Emission and Field Ionization, Harvard University Press, Cambridge (1961).Google Scholar
  9. 9.
    R. Gomer and A. Auerbach, The effect of finite resolution on the determination of diffusion coefficients by the field emission fluctuation method, Surf. Sci. 167, 493 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    J.R. Banavar and R. Gomer, Density fluctuation autocorrelation functions for surface diffusion with various boundary conditions, Surf. Sci. 97, L345 (1980).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Song and R. Gomer, Diffusion of oxygen on the Mo(110) Plane, Surf. Sci. 290, 1 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    T. Okano, T. Honda, and Y. Tuzi, Measurement of field emission current fluctuations by digitial autocorrelation of electron counting, Jap. J. Appl Phys. 24, L764 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    J.E. Whitten and R. Gomer, Surface diffusion measurements by digitized autocorrelation of field emission current fluctuations, Rev. Sci. Instrum. 65, 3707 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    C. Uebing and R. Gomer, Effect of signal discreteness on correlation functions, J. Appl. Phys. 69, 8 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    J.-R. Chen and R. Gomer, Mobility of CO on the (110) plane of tungsten, Surf. Sci. 81, 589 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    R. Gomer, Extensions of the field-emission fluctuation method for the determination of surface diffusion coefficients, Appl. Phys. A39, 1 (1986).ADSGoogle Scholar
  17. 17.
    M. Sumetskii and A.A. Kornyshev, Noise in STM due to atoms moving in the tunneling space, Phys. Rev. B48: 17493 (1993).ADSGoogle Scholar
  18. 18.
    M. Lozano and M. Tringides, Surface diffusion measurements from STM tunneling current fluctuations, Europhys. Lett. 30, 537 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    C. Uebing and R. Gomer, A Monte Carlo study of surface diffusion coefficients in the presence of adsorbate-adsorbate interactions. I. Repulsive interactions, J. Chem. Phys. 95, 7626 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    C. Uebing and R. Gomer, Surface diffusion in the presence of phase transitions Monte Carlo studies of a simple lattice gas model, Surf. Sci. 331, 930 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    J.-R. Chen and R. Gomer, Mobility of oxygen on the (110) plane of tungsten, Surf. Sci. 79, 413 (1979).ADSCrossRefGoogle Scholar
  22. 22.
    J.-R. Chen and R. Gomer, Mobility and two-dimensional compressibility of Xe on the (110) plane of tungsten, Surf. Sci. 94, 456 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    R. DiFoggio and R. Gomer, Diffusion of hydrogen and deuterium on the (110) plane of tungsten, Phys. Rev. B25, 3490 (1982).ADSGoogle Scholar
  24. 24.
    T. Okano, Field emission current fluctuations from a (100) vicinal plane of tungsten with adsorbed Xe molecules, Jap. J. App. Phys. 22, 1496 (1983).ADSCrossRefGoogle Scholar
  25. 25.
    C. Dharmadhikari and R. Gomer, Diffusion of hydrogen and deuterium on the (111) plane of tungsten, Surf. Sci. 143, 223 (1984).ADSCrossRefGoogle Scholar
  26. 26.
    M. Tringides and R. Gomer, Anisotropy in surface diffusion: Oxygen, hydrogen, and deuterium on the (110) plane of tungsten, Surf. Sci. 155, 254 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    R. Morin. Diffusion and compressibility of sodium on the (110) plane of tungsten, Surf. Sci. 155, 187 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    R. Morin. Compared mobilities of Cs and Na on W(110) at low coverage, Surf. Sci. 162, 109 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    S.C. Wang and R. Gomer, Diffusion of hydrogen, deuterium, and tritium on the (110) plane of tungsten, Surf. Sci. 83, 4193 (1985).Google Scholar
  30. 30.
    M. Tringides and R. Gomer, Diffusion anisotropy of oxygen and of tungsten on the tungsten (211) plane, J. Chem. Phys. 84, 4049 (1986).ADSCrossRefGoogle Scholar
  31. 31.
    Y.M. Gong and R. Gomer, Thermal roughening on stepped tungsten surfaces. II. The zone (011)-(001), J. Chem. Phys. 88, 1370 (1988).ADSCrossRefGoogle Scholar
  32. 32.
    E.A. Daniels, J.C. Lin, and R. Gomer, Diffusion anisotropy of hydrogen and deuterium on the tungsten (211) plane, Surf. Sci. 204, 129 (1988).ADSCrossRefGoogle Scholar
  33. 33.
    D.-S. Choi and R. Gomer, Diffusion of W on a W(211) plane, Surf. Sci. 230, 277 (1990).ADSCrossRefGoogle Scholar
  34. 34.
    T.S. Lin, H.-J. Lu, and R. Gomer, Diffusion of CO on Ni(111) and Ni(115), Surf. Sci. 234, 251 (1990).ADSCrossRefGoogle Scholar
  35. 35.
    D.-S. Choi, S.K. Kim, and R. Gomer, Diffusion of tungsten on stepped tungsten surfaces, Surf. Sci. 234, 262 (1990).ADSCrossRefGoogle Scholar
  36. 36.
    T.-S. Lin and R. Gomer, Diffusion of 1H and 2H on the Ni(111) and (100) Planes, Surf. Sci. 255, 41 (1991).ADSCrossRefGoogle Scholar
  37. 37.
    D.-S. Choi, C. Uebing and R. Gomer, Diffusion of hydrogen and deuterium on stepped tungsten surfaces. I. W(123), Surf. Sci. 259, 139 (1991).ADSCrossRefGoogle Scholar
  38. 38.
    C. Uebing and R. Gomer, Diffusion of hydrogen and deuterium on stepped tungsten surfaces. II. W(023), Surf. Sci. 259, 151 (1991).ADSCrossRefGoogle Scholar
  39. 39.
    T. Honda and T. Okano, Anisotropy in surface diffusion of Ga atoms on a Ge(001) plane at the apex of a field emission tip, App. Surf. Sci. 60/61, 260 (1992).ADSCrossRefGoogle Scholar
  40. 40.
    Y. Song and R. Gomer, Diffusion of CO on the Mo(110) plane, Surf. Sci. 295, 174 (1993).ADSCrossRefGoogle Scholar
  41. 41.
    E.A. Daniels and R. Gomer, Diffusion of 1H and 2H on W(001), Surf. Sci. 336, 245 (1995).ADSCrossRefGoogle Scholar
  42. 42.
    Y. Song and R. Gomer, Diffusion of Oxygen on the Re(2021) Plane, Surf Sci. 346, 243 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Robert Gomer
    • 1
  1. 1.The James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations