Diffusion of Adsorbed Molecules on Solid Surfaces

  • Kristen A. Fichthorn
  • Janhavi S. Raut
Part of the NATO ASI Series book series (NSSB, volume 360)


We have conducted molecular-dynamics (MD) simulation studies of diffusion in a series of physically adsorbed n-alkanes on a model Pt(111) surface. In addition, we have used transition-state theory (TST) to estimate diffusion-energy barriers for these molecules and to determine the characteristic mechanisms by which they diffuse. The combined studies yield insight into the relationship between molecular structure, size, and mobility. Our studies also reveal some of the unique features associated with molecular mobility, including: unique, one-jump mechanisms for molecular hopping between non-nearest-neighbor binding sites; conformational correlation in molecular hopping; and short-ranged, directional anisotropy in diffusion induced by the molecular degrees of freedom. We discuss some experimental ramifications of these unique features.


Diffusion Mechanism Directional Anisotropy Conformational Correlation Alkane Adsorption Molecular Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for example, R. Gomer, Rep. Prog. Phys. 53, 917 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    R. Wang and K. A. Fichthorn, Phys. Rev. B 48, 18288 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    J.-C. Wang and K. A. Fichthorn, Langmuir 12, 139 (1996).CrossRefGoogle Scholar
  4. 4.
    K. A. Fichthorn, P. Balan, and Y. Chen, Surf. Sci. 317, 37 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    D. Huang, P. Balan, Y. Chen, and K. A. Fichthorn, Molec. Sim. 13, 285 (1994).CrossRefGoogle Scholar
  6. 6.
    D. Huang, Y Chen, and K. A. Fichthorn, J. Chem. Phys. 101, 11021 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    D. Cohen and Y Zeiri, J. Chem. Phys. 97, 1531 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    M. Silverberg, J. Chem. Phys. 99, 9255 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    S. Pai and D. J. Doren, Surf. Sci. 291, 185 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    A. Calhoun and D. J. Doren, J. Phys. Chem. 97, 2251 (1993).CrossRefGoogle Scholar
  11. 11.
    T. Ala-Nissila, S. Herminghaus, T. Hjelt, and P. Leiderer, Phys. Rev. Lett. 76, 4003 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    J. L. Brand, M. V. Arena, A. A. Decken, and S. M. George, J. Chem. Phys. 92, 5136 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Hallmarck, S. Chiang, K.-P. Meinhardt, and K. Hafner, Phys. Rev. Lett. 70, 3740 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    P. S. Weiss and D. M. Eigler, Phys. Rev. Lett. 71, 3139 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    M. Bott, M. Hohage, M. Morgenstern, T. Michely, and G. Comsa, Phys. Rev. Lett. 76, 1304 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    B. S. Swartzentruber, Phys. Rev. Lett. 76, 459 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    T. Zambelli, J. Trost, J. Wintterlin, and G. Ertl, Phys. Rev. Lett. 76, 795 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    T. A. Jung, R. R. Schlitter, J. K. Gimzewski, H. Tang, and C. Joachim, Science 271, 181 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    See, for example, A. F. Voter, Phys. Rev. Lett. 63, 167 (1989).ADSCrossRefGoogle Scholar
  20. 20.
    S. V Khare, N. C. Bartelt, and T. L. Einstein, Phys. Rev. Lett. 75, 2148 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    C. DeW. Van Siclen, Phys. Rev. Lett. 75, 1574 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    K. Morgenstern, G. Rosenfeld, B. Poelsema, and G. Comsa, Phys. Rev. Lett. 74, 2058 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    J. M. Wen, S.-L. Chang, J. W. Burnett, J. W. Evans, and P. A. Thiel, Phys. Rev. Lett. 73, 2591 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    See, for example, Computer Modelling of Fluids, Polymers, and Solids, C. R. A. Catlow, S. C. Parker, and M. P. Allen, Eds., NATO ASI Series C:293, 189, Kluwer (1990).Google Scholar
  25. 25.
    L. E. Firment and G. A. Somorjai, J. Chem. Phys. 66, 2901 (1977).ADSCrossRefGoogle Scholar
  26. 26.
    T. K. Xia and U. Landman, Science 261, 1310 (1993).ADSCrossRefGoogle Scholar
  27. 27.
    J. S. Raut, D. S. Sholl, and K. A. Fichthorn, (Submitted to Surface Science).Google Scholar
  28. 28.
    J. A. Stinnett, R. J. Madix, and J. C. Tully, J. Chem. Phys. 104, 3134 (1996).ADSCrossRefGoogle Scholar
  29. 29.
    T. Halicioglú and G. M. Pound, Phys. Stat. Sol.(a) 30, 619 (1975).ADSCrossRefGoogle Scholar
  30. 30.
    S. Nosé, Prog. Theor. Phys, Supplement No. 103, 1 (1991).ADSCrossRefGoogle Scholar
  31. 31.
    C. Choi and R. Elber, J. Chem. Phys. 94, 751 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    J. S. Raut and K. A. Fichthorn, (To be published).Google Scholar
  33. 33.
    D. E. Sanders and A. E. DePristo, Surf. Sci. 260, 116 (1992).ADSCrossRefGoogle Scholar
  34. 34.
    J.-C. Wang and K. A. Fichthorn, (To be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Kristen A. Fichthorn
    • 1
  • Janhavi S. Raut
    • 1
  1. 1.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations