Skip to main content

A Model and Simulation of the Decay of Isolated Nanoscale Surface Features

  • Chapter
Surface Diffusion

Part of the book series: NATO ASI Series ((NSSB,volume 360))

  • 549 Accesses

Abstract

We describe the decay of isolated features (circular islands) on generic surfaces through models and simulations. A continuum model based on the Gibbs-Thomson relation is presented which provides the framework for understanding the time evolution of isolated nanoscale islands on surfaces. The assumptions of the continuum model are tested through Monte Carlo simulations of island decay and are found to be valid down to very small island sizes. Quantitative comparisons are made between the results of the simulations and the continuum model, providing insights into the relationship between continuum and microscopic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. W. Greenwood, Ada. Metall. 4, 243 (1956).

    Article  Google Scholar 

  2. I. M. Lifshitz and V. V. Slezov, Sov. Phys.—JETP 8, 331 (1959), [Trans. of Zh. Eksp. Teor. Fiz. 35, 479 (1958)].

    MathSciNet  Google Scholar 

  3. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  ADS  Google Scholar 

  4. C. Wagner, Z. Elektrochem. 65, 581 (1961).

    Google Scholar 

  5. B. K. Chakraverty, J. Phys. Chem. Solids 28, 2401 (1967).

    Article  ADS  Google Scholar 

  6. P. Wynblatt and N. A. Gjostein, in Supported Metal Crystallites, Vol. 9 of Progress in Solid State Chemistry, J. O. McCaldin and G. Somorjai, eds., Pergamon, Oxford, 1975, Chap. 2, p. 21.

    Google Scholar 

  7. C. V. Thompson, Acta Metall. 36, 2929 (1988).

    Article  Google Scholar 

  8. D. B. Dadyburjor, S. P. Marsh, and M. E. Glicksman, J. Catalysis 99, 358 (1986).

    Article  Google Scholar 

  9. J. A. Marqusee, J. Chem. Phys. 81, 976 (1984).

    Article  ADS  Google Scholar 

  10. P. W. Voorhees, J. Stat. Phys. 38, 231 (1985).

    Article  ADS  Google Scholar 

  11. M. Zinke-Allmang, Scanning Microscopy 4, 523 (1990).

    Google Scholar 

  12. D. J. Trevor and C. E. D. Chidsey, J. Vac. Sci. Technol. B 9, 964 (1991).

    Article  Google Scholar 

  13. D. R. Peale and B. H. Cooper, J. Vac. Sci. Technol. A 10, 2210 (1992).

    Article  ADS  Google Scholar 

  14. B. H. Cooper, D. R. Peale, J. G. McLean, R. Phillips, and E. Chason, in Evolution of Surface and Thin Film Microstructures, Vol. 250 of MRS Symposia Proc., H. A. Atwater, E. Chason, M. H. Grabow, and M. Lagally, eds., Mat. Res. Soc., Pittsburgh, PA, 1993, p. 37.

    Google Scholar 

  15. T. Michely, M. Hohage, M. Bott, and G. Comsa, Phys. Rev. Lett. 70, 3943 (1993).

    Article  ADS  Google Scholar 

  16. W. Theis, N. C. Bartelt, and R. M. Tromp, Phys. Rev. Lett. 75, 3328 (1995).

    Article  ADS  Google Scholar 

  17. K. Morgenstern, G. Rosenfeld, and G. Comsa, Phys. Rev. Lett. 76, 2113 (1996).

    Article  ADS  Google Scholar 

  18. J. Villain, Europhys. Lett. 2, 531 (1986).

    Article  ADS  Google Scholar 

  19. M. A. Dubson and G. Jeffers, Phys. Rev. B 49, 8347 (1994).

    Article  ADS  Google Scholar 

  20. B. Krishnamachari, J. G. McLean, J. P. Sethna, and B. H. Cooper, Phys. Rev. B 54, 8899 (1996).

    Article  ADS  Google Scholar 

  21. J. G. McLean, Ph.D. thesis, Cornell University, 1996.

    Google Scholar 

  22. J. G. McLean, B. Krishnamachari, D. R. Peale, E. Chason, J. P. Sethna, and B. H. Cooper, submitted for publication.

    Google Scholar 

  23. M. Breeman, G. T. Barkema, and D. O. Boerma, Surf. Sci. 303, 25 (1994).

    Article  ADS  Google Scholar 

  24. J. E. Avron, H. Van Beijeren, L. S. Schulman, and R. K. P. Zia, J. Phys. A: Math, Gen. 15, L81 (1982).

    Article  ADS  Google Scholar 

  25. G. Parisi, Statistical Field Theory, Addison Wesley, 1988, Chap. 4, p. 46.

    Google Scholar 

  26. M. F. Sykes, J. W. Essam and D. S. Gaunt, J. Math. Phys. 6, 283, Feb (1965).

    Google Scholar 

  27. S. V. Khare, N. C. Bartelt, and T. L. Einstein, Phys. Rev. Lett. 75, 2148 (1995). This work contains investigations of the shape fluctuations of clusters in equilibrium, similar to our size fluctuation analysis.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

McLean, J.G., Krishnamachari, B., Chason, E., Peale, D.R., Sethna, J.P., Cooper, B.H. (1997). A Model and Simulation of the Decay of Isolated Nanoscale Surface Features. In: Tringides, M.C. (eds) Surface Diffusion. NATO ASI Series, vol 360. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0262-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0262-7_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0264-1

  • Online ISBN: 978-1-4899-0262-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics