Effects of Surfactants on Surface Diffusion

  • Daniel Kandel
  • Efthimios Kaxiras
Part of the NATO ASI Series book series (NSSB, volume 360)


We suggest that surfactants enhance surface diffusion, and at the same time passivate island edges during semiconductor epitaxy. It is shown that the density of islands in the submonolayer regime, N, is proportional to F2i*/(i*+3), where F is the flux and i* is the critical island size.


Surface Diffusion Step Edge Kinetic Monte Carlo Surfactant Layer Stable Island 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, Phys. Rev. Lett. 63, 632 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    M. Copel, M. C. Reuter, M. Horn-von Hoegen, and R. M. Tromp, Phys. Rev. B 42, 11682 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    M. Horn-von Hoegen, F. K. LeGoues, M. Copel, M. C. Reuter, and R. M. Tromp, Phys. Rev. Lett. 67, 1130 (1991).ADSCrossRefGoogle Scholar
  4. 4.
    M. Horn-von Hoegen, M. Copel, J. C. Tsang, M. C. Reuter, and R. M. Tromp, Phys. Rev. B 50, 10811 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    B. Voigtländer and A. Zinner, J. Vac. Sci. Tech. A12, 1932 (1995).ADSGoogle Scholar
  6. 6.
    R. M. Tromp and M. C. Reuter, Phys. Rev. Lett. 68, 954 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    J. Massies and N. Grandjean, Phys. Rev. B 48, 8502 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    D. Kandel and E. Kaxiras, Phys. Rev. Lett. 75, 2742 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    S. Iwanari and K. Takayanagi, J. Cryst. Growth 119, 229 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    B. Voigtländer and A. Zinner, Surf. Sci. Lett. 292, L775 (1993).CrossRefGoogle Scholar
  11. B. Voigtländer, A. Zinner, T. Weber, and H. P. Bonzel, Phys. Rev. B 51, 7583 (1995).ADSCrossRefGoogle Scholar
  12. 11.
    E. Kaxiras, Thin Solid Films 272, 386 (1996).ADSCrossRefGoogle Scholar
  13. 12.
    E. Kaxiras, Europhys. Lett. 21, 685 (1993).ADSCrossRefGoogle Scholar
  14. E. Kaxiras, Mater. Sci. Eng. B30, 175 (1995).CrossRefGoogle Scholar
  15. 13.
    M. Horn-von Hoegen, J. Falta, M. Copel, and R. M. Tromp, Appl. Phys. Lett. 66, 487 (1994).ADSCrossRefGoogle Scholar
  16. 14.
    J. Tersoff and R. M. Tromp, Phys. Rev. Lett. 70, 2782 (1993).ADSCrossRefGoogle Scholar
  17. 15.
    D. Kandel, preprint.Google Scholar
  18. 16.
    See, for example, J. A. Venables, G. D. T. Spiller, and M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984), and references therein.ADSCrossRefGoogle Scholar
  19. 17.
    K. J. Routledge and M. J. Stowell, Thin Solid Films 6, 407 (1970).ADSCrossRefGoogle Scholar
  20. M. J. Stowell and T. E. Hutchinson, Thin Solid Films 8, 41 (1971).ADSCrossRefGoogle Scholar
  21. 18.
    A more sophisticated, self-consistent approach to rate equation theory can be found in G. S. Bales and D. C. Chrzan, Phys. Rev. B 50, 6057 (1994).ADSCrossRefGoogle Scholar
  22. 19.
    D. Walton, J. Chem. Phys. 37, 2182 (1962).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Daniel Kandel
    • 1
  • Efthimios Kaxiras
    • 2
  1. 1.Dept. of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Dept. of Physics and Division of Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations