Advertisement

The Role of Diffusion in Step Flow Growth

  • M. S. Altman
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

The role of diffusion in determining the condition for step flow growth is discussed. The steady-state, non-equilibrium adatom concentration during step flow is derived for the case that steps are imperfect, asymmetric sinks. Asymmetry caused by a step edge diffusion barrier is considered explicitly. This result can be used to calculate the critical terrace width for step flow growth. Experimental results obtained with low energy electron microscopy reveal an Arrhenius behaviour of the critical terrace width for Si/Si(111) (7×7) step flow growth. In the homogenous nucleation regime, the temperature dependence of the critical terrace width on Si(111) (7×7) is dominated by the diffusion energy.

Keywords

Step Edge Incident Flux Sticking Coefficient Diffusion Energy Step Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.K. Burton, N. Cabrera and F.C. Frank, Phil. Trans. Roy. Soc. (London) 243A, 299 (1951).MathSciNetADSGoogle Scholar
  2. 2.
    E.Z. Luo, W.F. Chung, Q. Cai, B.G. Orr and M.S. Altman, Phys. Rev. B (accepted for publication).Google Scholar
  3. 3.
    K. Sakamoto, K. Miki, T. Sakamoto, J. Cryst. Growth 99, 510 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    S. Iwanari, Y. Kimura and K. Takayanagi, J. Cryst. Growth 119, 229 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    M.S. Altman, W.F. Chung, T. Franz, Surf. Rev. Lett. (accepted for publication).Google Scholar
  6. 6.
    S. Iwanari and K. Takayanagi, J. Cryst. Growth 119, 241 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Kajikawa, M. Hata, T. Isu and Y. Katayama, Surf. Sci. 265, 241 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    M. Hata, T. Isu, A. Watanabe and Y. Katayama, J. Cryst. Growth 114, 203 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    J. Vrijmoeth, H.A. van der Vegt, J.A. Meyer, E. Vlieg, and R.J. Behm, Phys. Rev. Lett. 72, 3843 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Li and A. DePristo, Surf. Sci. 351, 189 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    L. Schwoebel and E.J. Shipsey, J. Appl. Phys. 37, 3682 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    R.L. Schwoebel, J. Appl. Phys. 40, 614 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    G.S. Bales and A. Zangwill, Phys. Rev. B 41, 5500 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Johnson, C. Orme, A.W. Hunt, D. Graff, J. Sudijono, L.M. Sander and B.G. Orr, Phys. Rev. Lett. 72, 116 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    B. Voightlander, A. Zinner, T. Weber, H.P. Bonzel, Phys. Rev. B 51, 7583 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    M.S. Altman and W.F. Chung (to be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • M. S. Altman
    • 1
  1. 1.Department of PhysicsHong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations