A Direct Measure of the Barrier to Interlayer Diffusion

  • K. R. Roos
  • M. C. Tringides
Part of the NATO ASI Series book series (NSSB, volume 360)


We use Monte Carlo simulations to study interlayer diffusion during submonolayer epitaxial growth in systems where the ratio of the terrace diffusion coefficient to deposition flux D/F is very high, and propose a method for directly measuring the barrier to interlayer diffusion from real experimental diffraction data.


Deposition Flux Finite Size Effect Realistic Boundary Stable Island Step Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Kunkel, B. Poelsema, L.K. Verheij, and G. Comsa, Reentrant layer-by-layer growth during molecular-beam epitaxy of metal-on-metal substrates, Phys. Rev. Lett. 65, 733 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    H.A. van der Vegt, H.M. van Pinxteren, M. Lohmeier, E. Vlieg, and J.M.C. Thornton, Surfactant-induced layer-by-layer growth of Ag on Ag(111), Phys. Rev. Lett. 68, 3335 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    G. Rosenfeld, R. Servanty, C. Teichert, B. Poelsema, and G. Comsa, Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: a model study for surfactantmediated growth, Phys. Rev. Lett. 71, 895 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    J. Vrijmoeth, H.A. van der Vegt, J.A. Meyer, E. Vlieg, and R.J. Behm, Surfactantinduced layer-by-layer growth of Ag on Ag(111): origins and side effects, Phys. Rev. Lett. 72, 3843 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    E.Z. Luo, J. Wollschläger, F. Wegner, and M. Henzler, SPA-LEED studies of growth of Ag on Ag(111) at low temperatures, Appl. Phys. A 60, 19 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    J.A. Meyer, J. Vrijmoeth, H.A. van der Vegt, E. Vlieg, and R.J. Behm, Importance of the additional step-edge barrier in determining film morphology during epitaxial growth, Phys. Rev. B 51, 14790 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    K. Bromann, H. Brune, H. Röder, and K. Kern, Interlayer mass transport in homoepitaxial and heteroepitaxial metal growth, Phys. Rev. Lett. 75, 677 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    M. Stanley, C. Papageorgopoulos, K.R. Roos, and M.C. Tringides, RHEED studies of interlayer diffusion in the submonolayer growth regime on Ag/Ag(111), Surf. Sci. 355, L264 (1996).CrossRefGoogle Scholar
  9. 9.
    A. Zangwill, Scaling description of sub-monolayer epitaxial growth, in: Evolution of Surface and Thin Film Microstructure, H.A. Atwater, E. Chason, M. Grabow and M. Lagally, eds., MRS, Pittsburgh (1993).Google Scholar
  10. 10.
    K.R. Roos and M.C. Tringides, Finite size effects in nucleation processes, Surf. Sci. 355, L259 (1996).CrossRefGoogle Scholar
  11. 11.
    J.G. Amar, F. Family, and P.-M. Lam, Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam epitaxy, Phys. Rev. B 50, 8781 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • K. R. Roos
    • 1
  • M. C. Tringides
    • 2
  1. 1.Department of PhysicsBradley UniversityPeoriaUSA
  2. 2.Department of Physics and Astronomy and Ames Laboratory-USDOEIowa State UniversityAmesUSA

Personalised recommendations