Advertisement

Submonolayer Island Formation and Subsequent Multilayer Kinetic Roughening During Metal(100) Homoepitaxy: Fe, Ag & Cu

  • J. W. Evans
  • M. C. Bartelt
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

Initial island formation and multilayer kinetic roughening observed during Fe/Fe(100), Ag/Ag(100) and Cu/Cu(100) homoepitaxy are analyzed utilizing an appropriate lattice-gas model. The model includes nucleation and growth of two-dimensional near-square islands in each layer, downward funneling of deposited atoms to four-fold hollow adsorption sites, and an additional step-edge barrier for interlayer transport. Key energies are predicted.

Keywords

Arrhenius Behavior Island Formation Island Density Multilayer Growth Island Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Venables, Rate equation approach to thin film kinetics, Phil. Mag. 27, 697 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    J.W. Evans and M.C. Bartelt, Nucleation and growth in metal-on-metal homoepitaxy: rate equations, simulations, and experiments, J. Vac. Sci. Technol. A12, 1800 (1994).ADSGoogle Scholar
  3. 3.
    C. Ratsch, A. Zangwill, P. Šmilauer, and D.D. Vvedensky, Saturation and scaling of epitaxial island densities, Phys. Rev. Lett. 72, 3994 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    M.C. Bartelt, L.S. Perkins, and J.W. Evans, Transitions in critical size for metal(100) homoepitaxy, Surf. Sci. 344, L1193 (1995).CrossRefGoogle Scholar
  5. 5.
    C. Ratsch, P. Šmilauer, A. Zangwill, and D.D. Vvedensky, Submonolayer epitaxy without a critical nucleus, Surf. Sci. 329, L599 (1995).CrossRefGoogle Scholar
  6. 6.
    M.C. Bartelt and J.W. Evans, Nucleation and growth of square islands during deposition, Surf. Sci. 298, 421 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    M.C. Bartelt and J.W. Evans, Transition to multilayer kinetic roughening for metal(100) homoepitaxy, Phys. Rev. Lett. 75, 4250 (1995).ADSCrossRefGoogle Scholar
  8. Kinetic roughening of Fe/Fe(100) epitaxial thin films, MRS Symp. Proc. 399, 89 (1996).Google Scholar
  9. 8.
    J. Villain, Continuum models of crystal growth, J. Phys. I1, 19 (1991).Google Scholar
  10. 9.
    C.-M. Zhang, M.C. Bartelt, J.-M. Wen, C.J. Jenks, J.W. Evans, and P.A. Thiel, Submonolayer island formation and the onset of multilayer growth during Ag/Ag(100) homoepitaxy, Surf. Sci. (in press). See also J. Cryst. Growth (in press).Google Scholar
  11. 10.
    J.A. Stroscio, D.T. Pierce, and R.A. Dragoset, Homoepitaxial growth of iron and a real space view of RHEED, Phys. Rev. Lett. 70, 3615 (1993).ADSCrossRefGoogle Scholar
  12. 11.
    J.A. Stroscio and D.T. Pierce, Scaling of diffusion-mediated island growth in iron-on-iron homoepitaxy, Phys. Rev. B49, 8522 (1994).ADSGoogle Scholar
  13. 12.
    J.G. Amar and F. Family, Critical cluster size: island morphology and size distribution in submonolayer epitaxial growth, Phys. Rev. Lett. 74, 2066 (1995).ADSCrossRefGoogle Scholar
  14. 13.
    P.J. Feibelman, STM: Energetics from statistical analysis, Phys. Rev. B52, 12444 (1995).ADSGoogle Scholar
  15. 14.
    J.-K. Zuo, J.F. Wendelken, H. Dürr, and C.-L. Liu, Growth and coalescence in submonolayer homoepitaxy on Cu(100) studied with high-resolution low-energy electron diffraction, Phys. Rev. Lett. 72, 3064 (1994).ADSCrossRefGoogle Scholar
  16. 15.
    H. Dürr, J.F. Wendelken, and J.-K. Zuo, Island morphology and adatom energy barriers during homoepitaxy on Cu(001), Surf. Sci. 328, L527 (1995).CrossRefGoogle Scholar
  17. 16.
    A.K. Swan, Z.-P. Shi, J.F. Wendelken, and Z. Zhang, Flux-induced huge jump in critical island size in Cu(100) homoepitaxy, Bull. Am. Phys. Soc. 41, 630 (1996).Google Scholar
  18. 17.
    For irreversible island formation, we find that Lc=4π/d*=λLav, with λ≈1.7 at 0.3ML. Correcting for this factor in (b) corresponds to decreasing v from 1012/s to 1011/s, consistent with (a). This does not affect the estimate of Ebond within ±0.05eV.Google Scholar
  19. 18.
    J.A. Stroscio, D.T. Pierce, M. Stiles, A. Zangwill, and L.M. Sander, Coarsening of unstable features during Fe(001) homoepitaxy, Phys. Rev. Lett. 75, 4246 (1995).ADSCrossRefGoogle Scholar
  20. 19.
    J.G. Amar and F. Family, Step barrier for interlayer-diffusion in Fe/Fe(100) epitaxial growth, Phys. Rev. B52, 13801 (1995).ADSGoogle Scholar
  21. 20.
    W.C. Elliott, P.F. Miceli, T. Tse, and P.W. Stephens, Orientation dependence of homoepitaxy: an in situ X-ray scattering study of Ag, Physica B (in press), and preprint.Google Scholar
  22. 21.
    H.-J. Ernst, F. Fabre, R. Folkerts, and J. Lapujoulade, Observation of a growth instability during low temperature MBE, Phys. Rev. Lett. 72, 112 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. W. Evans
    • 1
  • M. C. Bartelt
    • 2
  1. 1.Department of MathematicsIowa State UniversityAmesUSA
  2. 2.IPRT, and Ames LaboratoryIowa State UniversityAmesUSA

Personalised recommendations