LEED Investigation of Surface Processes

  • M. Henzler
Part of the NATO ASI Series book series (NSSB, volume 360)


LEED (Low Energy Electron Diffraction) provides a variety of information on surfaces. Although diffusion is not measured directly, many processes, which include diffusion at some intermediate step, are well studied with LEED. Information needed for evaluation of the processes is essentially given in the spot profiles. Therefore, an overview over the evaluation of the spot profiles with respect to lateral and vertical distribution, to defects like steps, facets, and point defects will be given. A well investigated non-equilibrium process is the epitaxial growth, especially under ultra high vacuum conditions where LEED study is possible during growth. The oscillation of the peak intensity has been used to determine the growth mode in homoepitaxy. Here the diffusion contributes to the nucleation and growth, so the barrier may be derived. A possible step edge barrier has a strong influence on the oscillation behaviour. Examples for Pt on Pt(111) and Ag on Ag(111) will demonstrate the possibilities. Other non-equilibrium processes, which include diffusion, are coarsening of islands or domain structures and faceting of surfaces due to adsorbates. At finite temperatures surface arrangements may be in thermal equilibrium, nevertheless the diffusion provides a steady fluctuation of the arrangement. LEED studies are especially informative, when all surface atoms are involved in the fluctuations. Two examples will be studied: the roughening transition at the Cu(311) surface and the melting of a monolayer of Pb on top of Cu(111).


Surface Diffusion Equilibrium Process Step Edge LEED Pattern Kinematic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Papers by W. Moritz and by M. A. Van Hove in the Proceedings of the Workshop on “Electron Diffraction and Imaging”, Jan. 96, Scottsdale, Arizona, to appear in Surface Reviews and Letters (Ed. M. A. Van Hove).Google Scholar
  2. 2.
    M. Henzler in “Electron Spectroscopy for Surface Analysi,” ed. H. Ibach, Topics in Current Physics 4, Springer Berlin (1977), p. 117“.Google Scholar
  3. 3.
    M. Henzler in the Proceedings of the Workshop on “Electron Diffraction and Imaging,” Jan. 96, Scottsdale, Arizona, to appear in Surface Reviews and Letters (Ed., M. A. Van Hove).Google Scholar
  4. 4.
    H. Claus, A. Büssenschütt, and M. Henzler, Rev. Sci. Instr. 63 (1992) 2195.ADSCrossRefGoogle Scholar
  5. 5.
    B. Müller, Th. Schmidt and M. Henzler, Surf. Sci. (in press).Google Scholar
  6. 6.
    M. Henzler in Proc. ICSOS I Eds. M. Van Hove and S.Y. Tong, Springer Series in Surf. Sci. 2(1985), p. 351.Google Scholar
  7. 7.
    P. O. Hahn, J. Clabes, and M. Henzler, J.Appl. Phys. 51, 2179 (1980).CrossRefGoogle Scholar
  8. 8.
    J. Wollschläger, Surf. Sci. 328 (1995) 325.ADSCrossRefGoogle Scholar
  9. 9.
    J. Wollschläger, J. Falta, and M. Henzler, Appl. Phys. A50 (1990) 57.ADSGoogle Scholar
  10. 10.
    M. Horn, U. Gotter, and M. Henzler, J. Vac. Sci. Technol. B6 (1988) 727.Google Scholar
  11. 11.
    E. Z. Luo, S. Heun, M. Kennedy, J. Wollschläger, and M. Henzler, Phys. Rev. B49 (1994) 4858.ADSGoogle Scholar
  12. 12.
    B. A. Joyce, P. J. Dobson, J. H. Neave, K. Woodbridge, J. Zhang, P. K. Larsen, B. Böiger, Surf. Sci. 168 (1986) 423.ADSCrossRefGoogle Scholar
  13. 13.
    K. D. Gronwald and M. Henzler, Surf. Sci. 117 (1982) 180.ADSCrossRefGoogle Scholar
  14. 14.
    M. Henzler, Surf. Sci. 298 (1993) 369.ADSCrossRefGoogle Scholar
  15. 15.
    Th. Schmidt, PhD thesis, University Hannover, Germany, 1994.Google Scholar
  16. 16.
    M. Henzler, T. Schmidt, and E. Z. Luo, Proc. of the IV. Int Conf. on the Structure of Surfaces, Ed., Xide Xie S. Y. Tong and M. A. Van Hove, World Scientific (1994), p. 619.Google Scholar
  17. 17.
    E.Z. Luo, J. Wollschläger, F. Wegner, and M. Henzler, Appl.Phys. A60 (1995).Google Scholar
  18. 18.
    R. Altsinger, H. Busch, M. Horn, M. Henzler Surf. Sci. 200 (1988) 235.ADSCrossRefGoogle Scholar
  19. 19.
    M. Horn-von Hoegen and H. Pietsch, Surf. Sci. 321 (1994) L129.CrossRefGoogle Scholar
  20. 20.
    S. Stoyanov and I. Markov, Surf. Sci. 116 (1982) 313.ADSCrossRefGoogle Scholar
  21. 21.
    J. A. Venables, G.D.T. Spiller and M. Hanbücken, Rep.Prog.Phys. 47 (1984) 399.ADSCrossRefGoogle Scholar
  22. 22.
    E. Suliga and M. Henzler, J. Phys. C 16 (1983) 1543.ADSCrossRefGoogle Scholar
  23. 23.
    H. Busch and M. Henzler, Phys. Rev. B 41 (1990) 4891.ADSCrossRefGoogle Scholar
  24. 24.
    Ke-an Feng, Surf. Sci. Letts. 262 (1992) L70.ADSCrossRefGoogle Scholar
  25. 25.
    M. Henzler, H. Busch, and G. Friese, in Kinetics of Ordering and Growth at Surfaces, ed.by M.G. Lagally, NATO ASI Series 239, Springer Science+Business Media New York, 1990.Google Scholar
  26. 26.
    J. Falta, R. Imbihl and M. Henzler, Phys. Rev. Lett. 64 (1990) 1409.ADSCrossRefGoogle Scholar
  27. 27.
    J. Falta, R. Imbihl, M. Sander, and M. Henzler, Phys. Rev. B 45 (1992) 6858.ADSGoogle Scholar
  28. 28.
    H. Pfnür, this volume.Google Scholar
  29. 29.
    J. Wollschläger, E. Z. Luo, M. Henzler, Phys. Rev. B 44, (1991) 13031.ADSGoogle Scholar
  30. 30.
    B. Salanon, F. Fabre, J. Lapujoulade, and W. Selke, Phys. Rev. B 38, 7385 (1988).ADSGoogle Scholar
  31. 31.
    B. Müller, Th. Schmidt and M. Henzler, Surf. Sci. (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • M. Henzler
    • 1
  1. 1.Institut für FestkörperphysikUniversität HannoverHannoverGermany

Personalised recommendations