Advertisement

Submonolayer Nucleation and Growth of Copper on Ni(100)

  • Bert Müller
  • Lorenz Nedelmann
  • Bjørn Fischer
  • Harald Brune
  • Klaus Kern
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

Island densities and island sizes can be varied or even tailored by choice of external parameters in molecular beam epitaxy, i. e., by the choice of substrate temperature, deposition rate, and coverage. We present a comprehensive study of the nucleation kinetics of Cu on Ni(100) using variable temperature scanning tunneling microscopy. The analysis of the saturation island density as a function of substrate temperature and deposition rate reveals that the smallest stable island abruptly changes from a dimer to a tetramer. The sizes of the critical nuclei are determined from the rate dependence of the saturation island density using mean-field nucleation theory consistent with results from the island size distribution using scaling theory. From the Arrhenius-plot, the microscopic quantities (migration barrier and dimer bond energy) have been deduced.

Keywords

Substrate Temperature Critical Nucleus Island Size Nucleation Kinetic Migration Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Venables, G. D. T. Spiller, and M. Hanbücken. “Nucleation and growth of thin films”. Rep. Prog. Phys., 47, 399 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    H. Brune, H. Röder, C. Boragno, and K. Kern. “Microscopic view of nucleation on surfaces”. Phys. Rev. Lett, 73, 1955 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    H. Dürr, J. F. Wendelken, and J. K. Zuo. “Island morphology and adatom energy barriers during homoepitaxy on Cu(001)”. Surf. Sci, 328, L527 (1995).CrossRefGoogle Scholar
  4. 4.
    H. J. Ernst, F. Fabre, and J. Lapujoulade. “Nucleation and diffusion of Cu adatoms on Cu(001): A helium-atom-beam scattering study”. Phys. Rev. B, 46, 1929 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    M. Bott, T. Michely, and G. Comsa. “The homoepitaxial growth of Pt on Pt(111) studied with STM”. Surf. Sci., 272, 161 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    H. Röder, H. Brune, J. P. Bucher, and K. Kern. “Changing morphology of metallic monolayers via temperature controlled heteroepitaxial growth”. Surf. Sci., 298, 121 (1993).CrossRefGoogle Scholar
  7. 7.
    J. A. Stroscio, D. T. Pierce, and R. A. Dragoset. “Homoepitaxial growth of iron and a real space view of reflection-high-energy-electron diffraction”. Phys. Rev. Lett., 70, 3615 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    J.-P. Bucher, E. Hahn, P. Fernandez, C. Massobrio, and K. Kern. “Transition from one-to two-dimensional growth of Cu on Pd(110) promoted by cross-exchange migration”. Europhys. Lett, 27, 473 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    S. Günther, E. Kopatzki, M. C. Bartelt, J. W. Evans, and R. J. Behm. “Anisotropy in nucleation and growth of two-dimensional islands during homoepitaxy on ‘hex’ reconstructed Au(100)”. Phys. Rev. Lett, 73, 553 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    Michael Bott, Michael Hohage, Markus Morgenstern, Thomas Michely, and George Comsa. “New approach for determination of diffusion parameters of adatoms”. Phys. Rev. Lett., 76, 1304 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    T. R. Linderoth, J. J. Mortensen, K. W. Jacobsen, E. Laegsgaard, I. Stensgaard, and F. Besenbacher. “Homoepitaxial growth of Pt on Pt(001)-hex: Effects of strongly anisotropic diffusion and finite island sizes”. Phys. Rev. Lett, 77, 87 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    J. A. Stroscio and D. T. Pierce. “Scaling of diffusion-mediated island growth in iron-on-iron homoepitaxy”. Phys. Rev. B, 49, 8522 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    Holger Röder, Elmar Hahn, Harald Brune, Jean-Pierre Bucher, and Klaus Kern. “Building one-and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces”. Nature, 366, 141 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    J. A. Venables. “Rate equation approaches to thin film nucleation kinetics”. Philos. Mag., 17, 697 (1973).ADSCrossRefGoogle Scholar
  15. 15.
    M. C. Bartelt and J. W. Evans. “Scaling analysis of diffusion-mediated island growth in surface adsorption processes”. Phys. Rev. B, 46, 12675 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    J. G. Amar and F. Family. “Critical cluster size: Island morphology and size distribution in submonolayer epitaxial growth”. Phys. Rev. Lett., 74, 2066 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    Harald Brune, Holger Röder, Karsten Bromann, and Klaus Kern. “Kinetic processes in metal epitaxy studied with variable temperature STM: Ag/Pt(111)”. Thin Solid Films, 264, 230 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    Z. Zhang, X. Chen, and M. G. Lagally. “Bonding-geometry dependence of fractal growth on metal surfaces”. Phys. Rev. Lett, 73, 1829 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    B. Müller, L. Nedelmann, B. Fischer, J. Barth, H. Brune, and K. Kern. “Irregular island shapes on square lattices”. to be published.Google Scholar
  20. 20.
    M. F. Sykes and M. Glen. “Percolation processes in two dimensions I. low density series expansions”. J. Phys. A. Math. Gen., 9, 87 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    B. Müller, L. Nedelmann, B. Fischer, H. Brune, and K. Kern. “Initial stages of Cu epitaxy on Ni(100): Post-nucleation and a well defined transition in critical island size”. Phys. Rev. B, accepted.Google Scholar
  22. 22.
    Strictly speaking χ = 1/3 is only exact for compact islands. For ramified islands slightly higher values have been reported. G. S. Bales and D. C. Chrzan. “Dynamic of irreversible island growth during submonolayer epitaxy”. Phys. Rev. B, 50, 6057 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    G. L. Kellogg. “Field ion microscopy studies of single-atom surface diffusion and cluster nucleation on metal surfaces”. Surf. Sci. Rep., 21, 1 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    L. S. Perkins and A. E. DePristo. “Heterogeneous adatom diffusion on fcc(100) surfaces: Ni, Cu, Rh, Pd, and Ag”. Surf. Sci., 319, 225 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    M. C. Bartelt, L. S. Perkins, and J. W. Evans. “Transitions in critical size for metal (100) homoepitaxy”. Surf. Sci., 344, L1193 (1995).CrossRefGoogle Scholar
  26. 26.
    K. W. Jacobsen. “Bonding in metallic systems: An effective-medium approach”. Comments Cond. Mat Phys., 14, 129 (1988).Google Scholar
  27. 27.
    P. Stoltze. “Simulations of surface defects”. J. Phys. Condens. Matter, 6, 9495 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Bert Müller
    • 1
  • Lorenz Nedelmann
    • 1
  • Bjørn Fischer
    • 1
  • Harald Brune
    • 1
  • Klaus Kern
    • 1
  1. 1.Institut de Physique ExpérimentaleEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations