Advertisement

Surface Energetics from Analysis of Nucleation Data in Metal Homoepitaxy

  • Ivan Markov
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

Analysis of experimental data on nucleation on surfaces is far from being a routine procedure. This is illustrated on the example of 2D nucleation on Cu(001) (Zuo et al. Phys. Rev. Lett. 72, 3064 (1994); Dürr et al. Surf. Sci. 328, L517 (1995)). The reinterpretation of the data leads to the result that the observed change of the slope of the Arrhenius plot of the island separation can be explained by a change of the mechanism of diffusion from a concerted substitutional mechanism at low temperatures with an energy barrier of 0.24 eV to a bridge-hopping mechanism at higher temperatures with an energy barrier of 0.45 eV, rather than by a change in the number of atoms in the critical nucleus from 1 to 3.

Keywords

Arrhenius Plot Surface Diffusion Critical Nucleus Kinetic Monte Carlo Attempt Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. T. Tsong, Physics Today 46, 24 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    M. Bott, T. Michely, and G. Comsa, Surf. Sci. 272, 161 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    B. Voigtländer and A. Zinner, Surf. Sci. 292, L775 (1993).CrossRefGoogle Scholar
  4. 4.
    J. A. Stroscio, D. T. Pierce, and R. A. Dragoset, Phys. Rev. Lett. 70, 3615 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    H.-J. Ernst, F. Fabre, and J. Lapujoulade, Phys. Rev. B. 46, 1929 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    J.-K. Zuo, J. F. Wendelken, H. Dürr, and C.-L. Liu, Phys. Rev. Lett. 72, 3064 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    H. Dürr, J. F. Wendelken, and J.-K. Zuo, Surf. Sci. 328, L527 (1995).CrossRefGoogle Scholar
  8. 8.
    P. J. Feibelman, Comments Condens. Matter Phys. 16, 191 (1993).Google Scholar
  9. 9.
    P. J. Feibelman, Phys. Rev. B 52, 12444 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    S. Stoyanov and D. Kashchiev, in: Current Topics in Materials Science, vol. 7, E. Kaldis ed., North Holland, Amsterdam, 1981, p. 69.Google Scholar
  11. 11.
    J. A. Venables, G. D. T. Spiller, and M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    M. J. Stowell, Philos. Mag. 21, 125 (1970).ADSCrossRefGoogle Scholar
  13. 13.
    S. Günther, E. Kopatzki, M. C. Bartelt, J. W. Evans, and R. J. Behm, Phys. Rev. Lett. 73, 553 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    E. Kopatzki, S. Günther, and R. J. Behm, Surf. Sci. 284, 154 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    M. Avrami, J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941).ADSCrossRefGoogle Scholar
  16. 16.
    J. A. Venables, Philos. Mag. 27, 693 (1973).ADSGoogle Scholar
  17. 17.
    D. Kashchiev, Phys. Stat. Sol. (a) 55, 369 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    G. T. Barkema, O. Biham, M. Breeman, D. O. Boerma, and G. Vidali, Surf. Sci. 306, L569 (1994).CrossRefGoogle Scholar
  19. 19.
    W. K. Burton, N. Cabrera, and F. C. Frank, Phil. Trans. Roy. Soc. 243, 299 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    A. Milchev and J. Malinowski, Surf. Sci. 156, 36 (1985).ADSCrossRefGoogle Scholar
  21. 21.
    C.-L. Liu, Surf. Sci. 316, 294 (1994).ADSCrossRefGoogle Scholar
  22. 22.
    D. W. Bassett and D. R. Rice, in The Physical Basis for Heterogeneous Catalysis, E. Drauglis and R. I. Jaffee eds., Plenum Press, New York, 1975, p. 231.CrossRefGoogle Scholar
  23. 23.
    T. T. Tsong and R. Casanova, Phys. Rev. B 21, 4564 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    M. Breeman, G. T. Barkema, and D. O. Boerma, Surf. Sci. 323, 71 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    Z.-J. Tian and T. S. Rahman, Phys. Rev. B 47, 9751 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    L. B. Hansen, R. Stolze, K. W. Jakobsen, and J. K. N0rskov, Surf. Sci. 289, 68 (1993).ADSCrossRefGoogle Scholar
  27. 27.
    L. S. Perkins and A. E. DePristo, Surf. Sci. 325, 169 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    C. Lee, G. T. Barkema, M. Breeman, A. Pasquarello, and R. Car, Surf. Sci. 306, L575 (1994).CrossRefGoogle Scholar
  29. 29.
    M. Karimi, T. Tomkowski, G. Vidali, and O. Biham, Phys. Rev. B 52, 5364 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    M. Breeman and D. O. Boerma, Surf. Sci. 269/270, 224 (1992).ADSCrossRefGoogle Scholar
  31. 31.
    J. J. DeMiguel, A. Sánchez, A. Cebollada, J. M. Galego, J. Ferrón, and S. Ferrer, Surf. Sci. 189/190, 1062 (1987).ADSCrossRefGoogle Scholar
  32. 32.
    G. S. Bales and D. C. Chrzan, Phys. Rev. B 50, 6057 (1994).ADSCrossRefGoogle Scholar
  33. 33.
    M. C. Bartelt and J. W. Evans, Surf. Sci. 298, 421 (1993).ADSCrossRefGoogle Scholar
  34. 34.
    C. Ratsch, P. Šmilauer, A. Zangwill, and D. D. Vvedensky, Surf. Sci. 329, L599 (1995).CrossRefGoogle Scholar
  35. 35.
    M. C. Bartelt, S. Günther, E. Kopatzki, R. J. Behm, and J. W. Evans, Phys. Rev. B 53, 4099 (1996).ADSCrossRefGoogle Scholar
  36. 36.
    P. J. Feibelman, NATO ASI Series on Surface Diffusion: Atomistic and Collective Processes, M. Tringides ed., Springer Science+Business Media New York.Google Scholar
  37. 37.
    D. Kashchiev, Surf. Sci. 55, 477 (1976); 86, 14 (1979).ADSCrossRefGoogle Scholar
  38. 38.
    K. Morgenstern, G. Rosenfeld, and G. Comsa, Phys. Rev. Lett. 76, 2113 (1996).ADSCrossRefGoogle Scholar
  39. 39.
    I. Markov and D. Kashchiev, J. Cryst. Growth 13/14, 131 (1972); 16, 170 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ivan Markov
    • 1
  1. 1.Institute of Physical ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations