Skip to main content

High-Frequency Fields

  • Chapter
  • 415 Accesses

Abstract

We consider a narrowband signal (see Chapter 4) in a lossless time-invariant isotropic medium of parameters ε0ε and μ0μ, whose relative permittivity ε and permeability μ may be space-dependent. We define the free-space propagation constant \( {k_0} = \sqrt {{\varepsilon _0}{\mu _0}} \), the free-space intrinsic impedance \( {\zeta _0} = \sqrt {{{{\mu _0}} \mathord{\left/ {\vphantom {{{\mu _0}} {{\varepsilon _0}}}} \right. \kern-\nulldelimiterspace} {{\varepsilon _0}}}} \), and the relative refractive index \( n = \sqrt {\varepsilon \mu } \), space-dependent in general.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Born and E. Wolf, Principles of Optics, Pergamon Press, New York (1970).

    Google Scholar 

  2. J. B. Keller, “A geometrical theory of diffraction,” in Calculus of Variations and its Applications, Proc. Symp. Appl. Math. 8, pp. 27–52, McGraw-Hill, New York (1952).

    Chapter  Google Scholar 

  3. R. G. Kouyoumjian, “The geometrical theory of diffraction and its applications,” in Numerical and Asymptotic Techniques in Electromagnetics (R. Mittra, ed.), Springer-Verlag, Berlin (1975).

    Google Scholar 

  4. G. L. James, Geometrical Theory of Diffraction for Electromagnetic Waves, Peter Peregrinus, England (1976).

    Google Scholar 

  5. P. H. Pathak, “Techniques for high frequency problems,” in Antenna Handbook: Theory, Application and Design (Y. T. Wo and S. W. Lee, eds.), Van Nostrand Reinhold, New York (1988).

    Google Scholar 

  6. P. Y. Ufimtsev, “Methods of edge waves in the physical theory of diffraction,” translation prepared by the US Air Force Foreign Technology Division, Wright Patterson AFB, Ohio (1971).

    Google Scholar 

  7. P. Y. Ufimtsev, “Theory of acoustical edge waves,” J. Acoust. Soc. Amer. 86, 463–474 (1989).

    Article  Google Scholar 

  8. S. Solimeno, B. Cosignani, and P. Di Porto, Guiding, Diffraction and Confinement of Optical Radiation, Academic Press, Orlando (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Franceschetti, G. (1997). High-Frequency Fields. In: Electromagnetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0257-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0257-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0259-7

  • Online ISBN: 978-1-4899-0257-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics