• Giorgio Franceschetti


Macroscopic electromagnetic phenomena are described by a set of equations named after James Clerk Maxwell.1


Constitutive Relation Maxwell Equation Anisotropic Medium Magnetic Charge Poynting Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1.1]
    J. C. Maxwell, A Treatise on Electricity and Magnetism, Dover Publications (1974); also published in two volumes by Oxford University Press (1995).Google Scholar
  2. [1.2]
    R. S. Elliott, Electromagnetics, McGraw-Hill, New York (1966).Google Scholar
  3. [1.3]
    J. D. Jackson, Classical Electrodynamics, Wiley, New York (1962).Google Scholar
  4. [1.4]
    D. S. Jones, The Theory of Electromagnetism, Pergamon Press, Oxford (1964).MATHGoogle Scholar
  5. [1.5]
    J. A. Kong, Electromagnetic Wave Theory, Wiley, New York (1990).Google Scholar
  6. [1.6]
    J. D. Kraus, Electromagnetics, McGraw-Hill, New York (1984).Google Scholar
  7. [1.7]
    W. K. H. Panofski and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, Reading, Mass., 1962.Google Scholar
  8. [1.8]
    C. H. Papas, Theory of Electromagnetic Wave Propagation, McGraw-Hill, New York (1965).Google Scholar
  9. [1.9]
    D. T. Paris and G. K. Hurd, Basic Electromagnetic Theory, McGraw-Hill, New York (1969).Google Scholar
  10. [1.10]
    W. P. Smythe, Static and Dynamic Electricity, McGraw-Hill, New York (1950).Google Scholar
  11. [1.11]
    J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941).MATHGoogle Scholar
  12. [1.12]
    J. Van Bladel, Electromagnetic Fields, Hemisphere, Washington (1985).Google Scholar
  13. [1.13]
    J. R. Wait, Electromagnetic Wave Theory, Harper & Row, New York (1985).Google Scholar
  14. [1.14]
    C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves, Springer-Verlag, Berlin (1969).MATHCrossRefGoogle Scholar
  15. [1.15]
    D. L. Jaggard, X. Sun, and N. Engheta, “Canonical sources and duality in chiral media,” IEEE Trans. Antennas Propagat. AP-35, 1007–1013 (1988).MathSciNetCrossRefGoogle Scholar
  16. [1.16]
    H. G. Booker, Energy in Electromagnetism, Peter Peregrinus, New York (1982).Google Scholar
  17. [1.17]
    J. Meixner, “Die kanteubedingung in der theorie der Beugung Elektromagnetisher Wellen an Volkommen Lertenden Ebeneu Shirmen,” Ann. Phys. 6, 2–6 (1949).MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Giorgio Franceschetti
    • 1
    • 2
  1. 1.University of NaplesNaplesItaly
  2. 2.University of California at Los AngelesLos AngelesUSA

Personalised recommendations