Advertisement

Weak Matrix Elements on the Lattice: Recent Developments in K-Physics

  • M. Talevi
Part of the NATO ASI Series book series (NSSB, volume 363)

Abstract

In this talk we present some recent developments in the calculation of weak matrix elements on the lattice. Lattice QCD is one of the few systematically improvable methods for computing them from first principles, and has proven a powerful and appealing approach. In spite of the successes, progress has been slow due to the presence of systematic effects, such as discretization and non-perturbative renormalization effects. In the following, we concentrate on the applications in K-physics of a recently introduced method for non-perturbative (NP) renormalization [1].

Keywords

Operator Product Expansion Renormalization Scale Landau Gauge Lattice Artefact Wilson Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, Nucl. Phys. B445 (1995) 81.ADSCrossRefGoogle Scholar
  2. [2]
    M. Bochicchio, L. Maiani, G. Martinelli, G.C. Rossi and M. Testa, Nucl. Phys. B262 (1985) 331.ADSCrossRefGoogle Scholar
  3. K. Jansen et al Phys. Lett. B372 (1996) 275.Google Scholar
  4. [4]
    S. Aoki et al. (JLQCD Collaboration), talk given at Lattice 96, 14th International Symposym on Lattice Field Theory, 4-8 June 1996, St. Louis, MO (USA), to appear in the proceedings.Google Scholar
  5. [5]
    A. Donini, G. Martinelli, C.T. Sachrajda, M. Talevi and A. Vladikas, Phys. Lett. B360 (1996) 83.Google Scholar
  6. [6]
    A. Donini, V. Giménez, G. Martinelli, M. Talevi and A. Vladikas. ROME1-1154/96.Google Scholar
  7. [7]
    G. Martinelli, G.C. Rossi, M. Talevi, M. Testa and A. Vladikas, in preparation.Google Scholar
  8. [8]
    L. Maiani, G. Martinelli, G.C. Rossi and M. Testa, Phys. Lett. B176 (1986) 445 Nucl. Phys. B289 (1987) 505.Google Scholar
  9. [9]
    M. Ciuchini, E. Franco, G. Martinelli, L. Reina and L. Silvestrini, Z. Phys. C68 (1995) 239.Google Scholar
  10. [10]
    G.P. Lepage and P.B. Mackenzie, Phys. Rev. D48 (1993) 2250.Google Scholar
  11. [11]
    G. Martinelli, Phys. Lett. B141 (1984) 395.Google Scholar
  12. C. Bernard, A. Soni and T. Draper, Phys. Rev. D36 (1987) 3224.ADSGoogle Scholar
  13. [12]
    G. Heatlie, G. Martinelli, C. Pittori, G.C. Rossi and C.T. Sachrajda, Nucl. Phys. B352 (1991) 266.ADSCrossRefGoogle Scholar
  14. M. Crisafulli et al., Phys. Lett. B369 (1996) 325.ADSGoogle Scholar
  15. [14]
    C. Bernard, T. Draper, G. Hockney and A. Soni, Nucl. Phys. B (Proc. Suppl.) 4 (1988) 483.ADSCrossRefGoogle Scholar
  16. M. Löscher et al., talk given at Lattice 96, 14th International Symposyum on Lattice Field Theory, 4-8 June 1996, St. Louis, MO (USA), to appear in the proceedings.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • M. Talevi
    • 1
  1. 1.Dip. di FisicaUniv. di Roma “La Sapienza” and INFNRomaItaly

Personalised recommendations