Advertisement

Noncommutative Geometry and the Internal Space of Gauge Theories

  • Thomas Krajewski
Part of the NATO ASI Series book series (NSSB, volume 363)

Abstract

In this seminar, we outline how one can use noncommutative geometry to describe the internal space of gauge theories with spontaneous symmetry breaking. This can be done only for a tiny subset of Yang-Mills-Higgs theories. We give some features of this subset, focusing on mild extensions of the standard model.

Keywords

Gauge Theory Gauge Group Gauge Transformation Gauge Boson Dirac Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Connes A. Géométrie non commutative,Intereditions (1990).Google Scholar
  2. [2]
    Connes A. Noncommutative Geometry,Academic Press (1994).Google Scholar
  3. [3]
    Connes A., Lott J. The metric aspect of noncommutative geometry, in the Proceedings of the 1991 Cargese Summer Conference, eds: J. Frölich and al, Plenum Press.Google Scholar
  4. [4]
    Connes A. Gravity coupled with matter and the foundation of non commutative geometry,hep-th/9603053 (1996).Google Scholar
  5. [5]
    Connes A. Noncommutative geometry and physics, in the Proceedings of the 1992 Les Houches Summerschool in Theoretical Physics, North Holland publishing.Google Scholar
  6. [6]
    Kastler D., Mebkhout M. Lectures on Noncommutative Differential Geometry,World Scientific (to be published).Google Scholar
  7. [7]
    Madore J. An Introduction to Noncommutative Differential Geometry and its Physical Applications,Cambridge University Press (1995).Google Scholar
  8. [8]
    Connes A. Noncommutative geometry and reality,J. Math. Phys. 36 6194, (1995).Google Scholar
  9. [9]
    Chamseddine A., Connes A. The Spectral Action Principle, hep-th 9606001, (1996).Google Scholar
  10. [10]
    Iochum B., Kastler D., Schücker T. On the universal Chamseddine-Connes action 1.Details of the action computation, hep-th 9607158, (1996).Google Scholar
  11. [11]
    Martin C.P., Gracia-Bondía J.M. and Varilly C.: The Standard Model as a non-commutative geometry: the low energy regime, preprint FT/UCM-12–96, UCRFM-6–96, hep-th/9605001 (1996).Google Scholar
  12. [12]
    Iochum B. and Schücker T. Yang-Mills-Higgs versus Connes-Lott, Comm. Math. Phys. 178 1–26, (1996).Google Scholar
  13. [13]
    Asquith R. Noncommutative Geometry and the Strong Force,phys. Lett. B 336, 220, (1995).Google Scholar
  14. [14]
    Pris I., Schücker T. Non-commutative geometry beyond the Standard Model, hepth/9604115 (1996)Google Scholar
  15. [15]
    Krajewski T., Pris I. Towards a Z’ Gauge Boson in Noncommutative Geometry,hep-th 9607005, (1996), to appear in Letters in Math. Phys.Google Scholar
  16. [16]
    Krajewski T. Classification of Finite Spectral Triples, in preparation.Google Scholar
  17. [17]
    Carminati L., Iochum B., Schücker T. The noncommutative constraints on the standard model à la Connes,hep-th 9604169 (1996), to appear in Journ. Math. Phys.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Thomas Krajewski
    • 1
    • 2
  1. 1.Centre de Physique ThéoriqueUPR 7061Marseille cedex 09France
  2. 2.Université de Provence and Ecole Normale Superieure de LyonFrance

Personalised recommendations