Skip to main content

Gaugino Condensation, Loop Corrections, and S-Duality Constraint

  • Chapter
Masses of Fundamental Particles

Part of the book series: NATO ASI Series ((NSSB,volume 363))

  • 140 Accesses

Abstract

Amongst the candidates for fundamental unified theories, heterotic superstring theory with gauge group E 8 × E 8 seems to be the most promising one. This is because the spectrum of the theory easily accomodates the Standard Model spectrum and gauge structure. In addition, the underlying gauge group contains an extra factor of E 8 which provides an ‘hidden sector’, which couples to the observable sector only through gravity, and, as will be discussed below, plays a crucial role in the mechanism of supersymmetry breaking. Furthermore, the effective theories that describe the heterotic string in 4 dimensions below the Planck scale are (nonrenormalizable) locally supersymmetric effective field theories. Indeed, requiring supersymmetry at energies well above M w in order to stabilize the gauge hierarchy, in some sense forces one to consider locally supersymmetric theories: A unified field theory must include gravity. Within the framework of General Relativity, a supersymmetric theory has to be locally supersymmetric. This follows from the fact that the supersymmetry transformation on the metric, or on the vielbein must include general coordinate transformations. Supergravity theories are nonrenormalizable, but can be consistently viewed as low-energy effective field theories (LEEFT) for the massless modes of superstring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Dixon, V. Kaplunovsky, and J. Louis Nucl. Phys. B355: 649 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  2. M. K. Gaillard, and B. Zumino, Nucl. Phys. B193: 221 (1981);

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Ferrara, J. Scherk., and B. Zumino, Nucl. Phys. 121: 393 (1977).

    Article  ADS  Google Scholar 

  4. P. Binétruy, and M.K. Gaillard, Phys. Lett. B365: 87 (1996).

    Google Scholar 

  5. K. Saririan, preprint LBL-381995, UCB-PTH-96/03 (To appear).

    Google Scholar 

  6. M. K. Gaillard, and Rulin Xiu, Phys. Lett. B296: 71 (1992);

    Google Scholar 

  7. R. Xiu, Phys. Rev. D49: 6656 (1994);

    ADS  Google Scholar 

  8. S. P. Martin, and P. Ramond, Phys. Rev. D51: 6515 (1995);

    Article  ADS  Google Scholar 

  9. K.R. Dienes, and A.E. Farraggi, Phys. Rev. Lett. 75: 2646 (1995).

    Article  ADS  Google Scholar 

  10. G. Veneziano, and S. Yankielowicz, Phys. Lett. B113: 231 (1982).

    Google Scholar 

  11. E. Witten, Nucl. Phys. B202: 253 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  12. H. P. Nilles, Phys. Lett. B115: 193 (1982);

    Google Scholar 

  13. S. Ferrara, L. Girardello, H. P. Nilles, Phys. Lett. B125 457 (1983).

    Google Scholar 

  14. P. Binétruy, and M.K. Gaillard, Phys. Lett. B253: 119 (1991).

    MathSciNet  Google Scholar 

  15. M. Dine, R. Rhom, N. Seiberg, and E. Witten, Phys. Lett. B156: 55 (1985).

    MathSciNet  Google Scholar 

  16. G.L. Cardoso, and B.A. Ovrut, Nucl. Phys. B369: 351 (1992);

    Article  MathSciNet  ADS  Google Scholar 

  17. G.L. Cardoso, and B.A. Ovrut, ibid., Nucl. Phys. B392: 315 (1993);

    Article  MathSciNet  ADS  Google Scholar 

  18. G.L. Cardoso, and B.A. Ovrut, ibid., Nucl. Phys. B418: 535 (1994);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. S. Ferrara, abd M. Villasante, Phys. Lett. B186: 87 (1987);

    Google Scholar 

  20. P. Binétruy, G. Girardi, R. Grimm, and M. Müller, Phys. Lett. B265 111 (1991);

    MathSciNet  Google Scholar 

  21. P. Adamietz, P. Binétruy, G. Girardi, and R. Grimm, Nucl. Phys. B401: 257 (1993);

    Article  ADS  MATH  Google Scholar 

  22. J.P. Derendinger, F. Quevedo, M. Quiros, Nucl. Phys. B428: 228 (1994).

    Article  MathSciNet  Google Scholar 

  23. I. Antoniadis, K.S. Narain, and T.R. Taylor, Phys. Lett. B267: 37 (1991).

    MathSciNet  Google Scholar 

  24. M.K. Gaillard, and T.R. Taylor, Nucl. Phys. B381: 577 (1992).

    Article  ADS  Google Scholar 

  25. A. Font, L. I. Ibanez, D. Lust, F. Quevedo, Phys. Lett. 241: 35 (1990).

    MathSciNet  Google Scholar 

  26. A. Sen, Int. J. Mod. Phys. A9: 3707 (1994)

    Google Scholar 

  27. J. H. Schwarz, and A. Sen, Phys. Lett. B312: 105 (1993);

    MathSciNet  Google Scholar 

  28. J. H. Schwarz, and A. Sen, Phys. Lett. B411: 105 (1994);

    Google Scholar 

  29. I. Girardello, A. Giveon, M. Porratti, A. Zaffaroni, Nucl. Phys. B448 127 (1995).

    Article  ADS  MATH  Google Scholar 

  30. M.K. Gaillard, V. Jain, and K. Saririan, preprint LBL-34984, hep-th/9606052 to be published in Phys. Rev. D; Also, Phys. Lett.B387: 520 (1996).

    Google Scholar 

  31. T. Banks, and M. Dine, Phys. Rev. D:50 7454 (1994).

    Google Scholar 

  32. P. Binétruy, M. K. Gaillard, and Y-Y. Wu, preprint LBNL-38590, UCB-PTH 96/13; hep-th/9605170 (to be published in Nucl. Phys. B).

    Google Scholar 

  33. V. Kaplunovsky, and J. Louis, Nucl. Phys. B422: 57 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. P. Binétruy, G. Girardi, R. Grimm, and M. Muller, Phys. Lett. 189B: 83 (1987);

    MathSciNet  Google Scholar 

  35. P. Binétruy, G. Girardi, and R. Grimm, Annecy preprint LAPP-TH-275–90, (1990).

    Google Scholar 

  36. M. A. Shifman, and A. I. Vainshtein, Nucl. Phys. B277: 456 (1986); and Nucl. Phys. B359: 571 (1991).

    Article  ADS  Google Scholar 

  37. V. Kaplunovsky, and J. Louis, Nucl. Phys. B444: 191 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saririan, K. (1997). Gaugino Condensation, Loop Corrections, and S-Duality Constraint. In: Lévy, M., Iliopoulos, J., Gastmans, R., Gérard, JM. (eds) Masses of Fundamental Particles. NATO ASI Series, vol 363. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0242-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0242-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0244-3

  • Online ISBN: 978-1-4899-0242-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics