Advertisement

Growth Rate Dispersion

  • Narayan S. Tavare
Part of the The Springer Chemical Engineering Series book series (PCES)

Abstract

There has been increasing recognition of the phenomenon of growth rate dispersion in the analysis and characterization of the crystal growth process. The concept originated from early work on the crystallization of sugar (White and Wright, 1971). Since then, several researchers have shown that for many crystallization systems—when a group of crystals, all of which have the same initial size, has been grown under globally identical external conditions of supersaturation, temperature, and hydrodynamics in a batch crystallizer under conditions of negligible nucleation—a stochastic variation in crystal growth rates exists, resulting in a broadening of the product crystal size distribution.

Keywords

Dispersion Model Peclet Number Population Balance Crystal Size Distribution Laplace Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbi, Y. P. and Gunn, D. J., “Dispersion characteristics from pulse response,” Trans. I. Chem. E. 54, 225–231 (1976).Google Scholar
  2. Abegg, C.F., Stevens, J. D. and Larson, M. A, “Crystal size distribution in continuous crystallizers when growth rate is size dependent,” AIChE J. 14, 118–122 (1968).CrossRefGoogle Scholar
  3. Anderson, A. S. and White, E. T., “Parameter estimation by the weighted moments method,” Chem. Eng. Sci. 26, 1203–1221 (1971).CrossRefGoogle Scholar
  4. Ans, R., “On the dispersion of a solute in a fluid flowing through a tube,” Proc. R. Soc. A235 67–77 (1956).Google Scholar
  5. Aris, R., “Note on the diffusion-type model for longitudinal mixing in flow,” Chem. Eng. Sci. 9, 266–267 (1959).CrossRefGoogle Scholar
  6. Berglund, K. A., Kaufman, E. L. and Larson, M. A., “Growth of contact nuclei of potassium nitrate,” AIChE J. 29, 867–869 (1983).CrossRefGoogle Scholar
  7. Berglund, K. A. and Larson, M. A., “Growth and growth dispersion of contract nuclei,” 2nd World Congress on Chemical Engineering, Montreal, Canada, 72-75 (1981).Google Scholar
  8. Berglund, K. A. and Larson, M. A., “Modelling of growth rate dispersion of citric acid monohydrate in continuous crystallizers,” AIChE J. 30, 280–287 (1984).CrossRefGoogle Scholar
  9. Berglund, K. A. and Mathis-Lilley, J. J., “Contact nucleation from aqueous potash alum solutions,” AIChE J. 31, 865–867 (1985).CrossRefGoogle Scholar
  10. Berglund, K. A. and Shanks, B. H., “Contact nucleation from aqueous sucrose solutions,” AIChE J. 31, 152–154 (1985).CrossRefGoogle Scholar
  11. Bohlin, M. and Rasmuson, A. C, “Modelling of crystal growth rate dispersion in a batch cooling crystallization,” AIChE J. 38, 1853–1863 (1992).CrossRefGoogle Scholar
  12. Bransom, S. H., “Factors in the design of continuous crystallizers,” Br. Chem. Eng. 5, 838–844 (1960).Google Scholar
  13. Bujac, P. D. B., “Attrition and secondary nucleation in agitated crystal slurries,” in Mullin, J. W. (Ed.), Industrial Crystallization, Plenum, New York, 23–31 (1976).CrossRefGoogle Scholar
  14. Canning, T. F. and Randolph, A. D., “Some aspects of crystallization theory: Systems that violate McCabe’s ΔL law,” AIChE J. 13, 5–10 (1967).CrossRefGoogle Scholar
  15. Clements, W. C. Jr., “A note on determination of the parameters of the longitudinal dispersion model from experimental data,” Chem. Eng. Sci. 24, 957–963 (1969).CrossRefGoogle Scholar
  16. Clements, W. C. Jr. and Schnelle, K. B., “Probe testing for dynamic analysis,” Ind. Eng. Chem. Proc. Des.Dev. 2, 94–102 (1963).CrossRefGoogle Scholar
  17. Davey, R. J., Ristic, R. I. and Zizic, B., “The role of dislocations in the growth of ammonium dihydrogen phosphate crystals from aqueous solutions,” J. Crystal Growth 47, 1–4 (1979).CrossRefGoogle Scholar
  18. Denk, E. G. and Botsaris, G. D., “Fundamental studies in secondary nucleation from solution,” J. Crystal Growth 13/14,493–499 (1972).CrossRefGoogle Scholar
  19. Elankovan, P. and Berglund, K. A., “Contact nucleation from aqueous solutions,” AIChE J. 33, 1845–1849 (1987).CrossRefGoogle Scholar
  20. Gabas, N. and Laguerie, C., “Dispersion of growth rates of D-xylose crystals in aqueous solutionsinfluence of the presence of ethanol as co-solvent and D-mannose as a co-solute,” Chem. Eng. Sei. 46, 1411–1418(1991).CrossRefGoogle Scholar
  21. Garside, J., “Growth of small crystals,” in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization’ 78, North-Holland, Amsterdam, 143–151 (1979).Google Scholar
  22. Garside, J., Das, S. N. and Mullin, J. W., “Growth and dissolution kinetics of potassium sulphate crystals in an agitated vessel,” Ind. Eng. Chem. Fundam. 13, 299–305 (1974).CrossRefGoogle Scholar
  23. Garside, J., Rusli, I. T. and Larson, M. A., “Origin and size distribution of secondary nuclei,” AIChE J. 25, 57–64(1979).CrossRefGoogle Scholar
  24. Garside, J. and Jancic, S. J., “Growth and dissolution of potash alum crystals in the subsieve size range,” AIChE J. 22, 887–894 (1976).CrossRefGoogle Scholar
  25. Garside, J. and Jancic, S. J., “Prediction and measurement of crystal size distributions for size dependent growth,” Chem. Eng. Sci. 33, 1623–1630 (1978).CrossRefGoogle Scholar
  26. Garside, J., Phillips, V. R. and Shah, M. B., “On size dependent crystal growth,” Ind. Eng. Chem. Fundam. 15, 230–233 (1976).CrossRefGoogle Scholar
  27. Garside, J. and Ristic, R. I., “Growth rate dispersion among ADP crystals formed by primary nucleation,” J. Crystal Growth 61, 215–220 (1983).CrossRefGoogle Scholar
  28. Girolami, M. W. and Rousseau, R. W., “Size-dependent crystal growth—a manifestation of growth rate dispersion in the potassium alum-water system,” AIChEJ. 31, 1821–1828 (1985).CrossRefGoogle Scholar
  29. Girolami, M. W. and Rousseau, R. W., “Industrial breeding in seeded batch crystallizers,” Ind. Eng. Chem. Proc. Des. Dev. 25, 66–70 (1986).CrossRefGoogle Scholar
  30. Hinze, J. O., Turbulence, McGraw Hill, New York, 275–375 (1959).Google Scholar
  31. Hopkins, M. J., Sheppard, A. J. and Eisenklam, P., “The use of transfer functions in evaluating residence time distribution curves,” Chem. Eng. Sci. 24, 1131–1137 (1969).CrossRefGoogle Scholar
  32. Human, H. J., Enckevort, W. J. P. and Bennama, P., “Spreadin growth rates of 111, 100 and 110 faces of potash alum growing from aqueous solutions,” in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization’ 81, North-Holland, Amsterdam, 387–388 (1982).Google Scholar
  33. Janse, A. H. and de Jong, E. J., “The occurrence of growth dispersion and its consequences,” in Mullin, J. W. (Ed.), Industrial Crystallization’ 75, Plenum, New York, 145–154 (1976).CrossRefGoogle Scholar
  34. Janse, A. H. and de Jong, E. J., “Growth and growth dispersion”, in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization’ 78, North-Holland, Amsterdam, 135–142 (1979).Google Scholar
  35. Jeffreson, C. P., “Dynamic testing—a unification,” Chem. Eng. Sci. 25, 1319–1329 (1970).CrossRefGoogle Scholar
  36. Johnson, J. L., Fan, L. T. and Wu, Y. S., “Comparison of moments, s-plane and frequency response methods for analyzing pulse testing data from flow systems,” Ind. Eng. Chem. Proc. Des. Dev. 10, 425–431 (1971).CrossRefGoogle Scholar
  37. Klug, D. L. and Pigford, R. L., “The probability distribution of growth rates of anhydrous sodium sulphate crystals,” Ind. Eng. Chem. Res. 28, 1718–1725 (1989).CrossRefGoogle Scholar
  38. Larson, M. A., “Secondary nucleation: Analysis,” Chem. Eng. Commun. 12, 161–169 (1981).CrossRefGoogle Scholar
  39. Larson, M. A., White, E. T., Ramanarayanan, K. A. and Berglund, K. A., “Growth rate dispersion in MSMPR crystallizers,” a paper presented at AIChE annual meeting, Los Angeles, California (1982).Google Scholar
  40. Larson, M. A., White, E. T., Ramanarayanan, K. A. and Berglund, K. A., “Growth rate dispersion in MSMPR crystallizers,” AIChEJ. 31, 90–94 (1985).CrossRefGoogle Scholar
  41. Liang, B. M., Hartel, R. W. and Berglund, K. A., “Growth rate dispersion in seeded batch sucrose crystallization,” AIChEJ. 33, 2077–2079 (1987).CrossRefGoogle Scholar
  42. Liang, B. M., Hartel, R. W. and Berglund, K. A., “Effects of raffinose on sucrose crystal growth kinetics and rate dispersion,” AIChE J 35, 2053–2057 (1989).CrossRefGoogle Scholar
  43. Melikhov, I. V. and Berliner, L. B., “Simulation of batch crystallization,” Chem. Eng. Sci. 36, 1021–1034 (1981).CrossRefGoogle Scholar
  44. Michelsen, M. L. and Ostergaard, K., “The use of residence time distribution data for estimation of parameters in the axial dispersion model,” Chem. Eng. Sci. 25, 583–592 (1970).CrossRefGoogle Scholar
  45. Misztal, S., Kolek, A. and Koch, R., “Isotopic method for studying the kinetics of crystal growth,” Kristall und Technik 15, 1261–1267 (1980).CrossRefGoogle Scholar
  46. Natal’ina, L. N. and Treivus, E. B., “Growth rate variations for KDP crystals,” Sov. Phys. Crystallogr. 19, 389–391 (1974).Google Scholar
  47. Purves, W. T. and Larson, M. A., “Contact nucleation of potassium nitrate,” J. Chem. E. Symp Series, Solid Separation Processes No. 59, 7:5/1–18 (1980).Google Scholar
  48. Ramanarayanan, K. A., Berglund, K. A. and Larson, M. A., “Growth dispersion from batch crystallizers,” Chem. Eng. Sci. 40, 1604–1608 (1985).CrossRefGoogle Scholar
  49. Randolph, A. D. and White, E. T., “Modelling size dispersion in the prediction of crystal size distribution,” Chem. Eng. Sci. 32, 1067–1076 (1977).CrossRefGoogle Scholar
  50. Rivera, T. and Randolph, A. D., “A model for the precipitation of pentaerythritol tetranitrate (PETN),” Ind. Eng. Chem. Proc. Des. Dev. 17, 182–188 (1978).CrossRefGoogle Scholar
  51. Rosen, J. B. and Winsche, W. E., “The admittance concept in the kinetics of chromatography,” J. Chem. Phys. 18, 1587–1592(1950).CrossRefGoogle Scholar
  52. Rusli, I. T., Larson, M. L. and Garside, J., “Initial growth of secondary nuclei produced by contact nucleation,” AIChE Symp Ser. No. 193 76, 52–58 (1980).Google Scholar
  53. Shah, Y. T., Gas-Liquid-Solid Reactor Design, McGraw Hill, New York, 60–104 (1979).Google Scholar
  54. Shiau, L. D. and Berglund, K. A., “Growth kinetics of fructose crystals formed by contact nucleatiori,” AIChE J. 33, 1028–1033 (1987).CrossRefGoogle Scholar
  55. Shiau, L. D. and Berglund, K. A., “Model for a cascade crystallizer in the presence of growth rate dispersion,” Ind. Eng. Chem. Res. 26, 2515–2521 (1987).CrossRefGoogle Scholar
  56. Shiau, L. D. and Berglund, K. A., “Growth rate dispersion in batch crystallization,” AIChEJ. 36, 1669–1672(1990).CrossRefGoogle Scholar
  57. Tavare, N. S., Studies on Crystallization, Ph.D thesis, University of Bombay, Bombay (1978).Google Scholar
  58. Tavare, N. S., “Growth Rate Dispersion,” Can. J. Chem. Eng. 63, 436–442 (1985).CrossRefGoogle Scholar
  59. Tavare, N. S. and Chivate, M. R., “Growth and dissolution kinetics of potassium sulphate crystals in a fluidised bed crystallizer,” Trans. Inst. Chem. Eng. 57, 35–42 (1979).Google Scholar
  60. Tavare, N. S. and Garside, J., “The characterisation of growth dispersion,” in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization’ 81, North-Holland, Amsterdam, 21–27 (1982a).Google Scholar
  61. Tavare, N. S. and Garside, J., “Estimation of crystal growth and dispersion parameters using pulse response techniques in batch crystallizers,” Trans. Inst. Chem. Eng. 60, 334–344 (1982b).Google Scholar
  62. Tavare, N. S. and Garside, J., “Determination of the Peclet number for crystal growth,” Chem. Eng. J. 25, 229–232 (1982c).CrossRefGoogle Scholar
  63. Ulrich, J., “Growth rate dispersion: A review,” Cryst. Res. Technol. 24, 249–257 (1989).CrossRefGoogle Scholar
  64. Valcic, A. V. “Influence of dissolution on the growth rates of saccharose crystals,” J. Crystal Growth 30, 129–136 (1975).CrossRefGoogle Scholar
  65. Wang, S. and Mersmann, A., “Initial-size-dependent growth rate dispersion of attrition fragment and secondary nuclei,” Chem. Eng. Sci. 47, 1365–1372 (1992).CrossRefGoogle Scholar
  66. Weisz, P. B., “Zeolites—new horizons in catalysis,” Chem. Tech. 498-505 (1973).Google Scholar
  67. Wen, C. Y. and Fan, L. T., Models for flow systems and chemical reactors, Marcel Dekker, New York, 113–208(1975).Google Scholar
  68. White, E. T., Bendig L. L. and Larson, M. A., “The effect of size on the growth rates of K2SO4 crystals,” AIChE Symp Ser. No. 153 72, 41–47 (1976).Google Scholar
  69. White, E. T. and Wright, P. G., “Magnitude of size dispersion effects in crystallization,” Chem. Eng. Prog. Symp. Ser. No. 110 67, 81–87 (1971).Google Scholar
  70. Williams, J. A., Alder, R. J. and Zolner III, W. J., “Parameter estimation of unsteady-state distributed models in the Laplace domain,” Ind. Eng. Chem. Fundam. 9, 193–197 (1970).CrossRefGoogle Scholar
  71. Zumstein, R. C. and Rousseau, R. W, “Growth rate dispersion in batch crystallization with transient conditions,” AIChEJ. 33,1921–1925 (1987a).CrossRefGoogle Scholar
  72. Zumstein, R. C. and Rousseau, R. W., “Growth rate dispersion by initial growth rate distributions and growth rate fluctuations,” AIChE J. 33, 121–129 (1987b).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Narayan S. Tavare
    • 1
  1. 1.University of Manchester Institute of Science and Technology (UMIST)ManchesterUK

Personalised recommendations