Advertisement

Continuous Crystallizers

  • Narayan S. Tavare
Part of the The Springer Chemical Engineering Series book series (PCES)

Abstract

In Chapters 5–7, the batch and semibatch modes of operations have been discussed. In this chapter, crystallizers operated in a continuous mode are considered from both process simulation and identification analyses. These crystallizers are generally suited to the manufacture of large-tonnage bulk commodity crystalline products because they can be operated at the desired operating conditions under steady state, thus yielding constant product quality. Since the early sixties, the steady-state continuous crystallizer studies have been used in the laboratory for industrial crystallization research.

Keywords

Nucleation Rate Population Balance Moment Analysis Crystal Volume Crystal Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abegg, C. F., Stevens, J. D. and Larson, M. A., “Crystal size distributions in continuous crystallizers when growth rate is size-dependent,” AIChE J. 14, 118–122 (1968).CrossRefGoogle Scholar
  2. Aeschbach, S. and Bourne, J. R., “The attainment of homogeneous suspension in a continuous stirred tank,” Chem. Eng. J. 4, 234–242 (1972).CrossRefGoogle Scholar
  3. Aeschbach, S., and Bourne, J. R., “Influence of the degree of crystal suspension on crystallizer stability,” in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization 1978, North-Holland, Amsterdam, 259–269 (1979).Google Scholar
  4. Akoglu, K., Tavare, N. S. and Garside, J., “Dynamic simulation of a nonisothermal MSMPR crystallizer,” Chem. Eng. Commun. 29, 353–367 (1984).CrossRefGoogle Scholar
  5. Anshus, B. E. and Ruckenstein, E. “On the stability of a well-stirred isothermal crystallizer,” Chem. Eng. Sci. 28, 501–513 (1973).CrossRefGoogle Scholar
  6. Bennett, R. C, “Crystallization, design,” in McKetta, J. J. (Ed.), Encyclopedia of Chemical Processing and Design 13,421–455 (1981).Google Scholar
  7. Berglund, K. A., and Larson, M. A., “Modelling of growth rate dispersion of citric acid monohydrate in continuous crystallizers,” AIChE J. 30, 280–287 (1984).CrossRefGoogle Scholar
  8. Bhatia, S. K., “Dynamics of continuous precipitation under non-stoichiometric conditions,” Chem. Eng. Sci. 44, 751–762 (1989).CrossRefGoogle Scholar
  9. Bourne, J. R., “Hydrodynamics of crystallizers with special reference to classification,” in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization 1978, North-Holland, Amsterdam, 215–222(1979).Google Scholar
  10. Bourne, J. R. and Zabelka, M., “The influence of gradual classification on continuous crystallization,” Chem. Eng. Sci. 35, 533–542 (1980).CrossRefGoogle Scholar
  11. Bransom, S. H., “Factors in the design of continuous crystal lizers,” Br. Chem. Eng. 5, 838–844 (1960).Google Scholar
  12. Canning, T. F. and Randolph, A. D., “Some aspects of crystallization theory: Systems that violate McCabe’s AL law,” AIChE J. 13, 5–10 (1967).CrossRefGoogle Scholar
  13. Daudey, P. J. and de Jong, E. J., “The dynamic behaviour of NaCl crystallization in a 91 L MSMPR Crystallizer,” in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization 84, Elsevier, Amsterdam, 447–450 (1984).Google Scholar
  14. Delpech de Saint Guilhem, X. and Ring, T. A., “Exact solution for the population in a continuous stirred tank crystallizer with agglomeration,” Chem. Eng. Sci. 42, 1247–1249 (1987).CrossRefGoogle Scholar
  15. Drake, R. L., “A general mathematical survey of the coagulation equation,” in Hidy, G. M. and Brock, J. R. (Eds.), Topics in Current Aerosol Research, Part 2, Pergamon Press, New York (1972).Google Scholar
  16. Epstein, M. A. F. and Sowul, L., “Phase space analysis of limit cycle development in CMSMPR crystallizers using three-dimensional computer graphics,” AIChE Symp. Ser. No. 193 76, 6–17 (1980).Google Scholar
  17. Garside, J. and Shah, M. B., “Crystallization kinetics from MSMPR crystallizers,” Ind. Eng. Chem. Proc. Des. Dev. 19, 509–514 (1980).CrossRefGoogle Scholar
  18. Garside, J., Das, S. N. and Mullin, J. W., “Growth and dissolution kinetics of potassium sulphate,” Ind. Eng. Chem. Fundam. 13, 299–305 (1974).CrossRefGoogle Scholar
  19. Garside, J. and Jancic, S. J., “Prediction and measurement of crystal size distribution for size-dependent growth,” Chem. Eng. Sci. 33, 1623–1630 (1978).CrossRefGoogle Scholar
  20. Garside, J., Phillips, V. R. and Shah, M. B., “On size-dependent crystal growth,” Ind. Eng. Chem. Fundam. 15, 230–238 (1976).CrossRefGoogle Scholar
  21. Grabenbauer, G. C. and Glatz, C. E., “Protein precipitation — analysis of particle size distribution and kinetics,” Chem. Eng. Commun. 12, 203–219 (1981).CrossRefGoogle Scholar
  22. Grootscholten, P. A. M., Solid-liquid Contacting Industrial Crystallizers and its Influence on Product Size Distribution, Ph.D. thesis, WTHD150, Laboratory for Process Equipment, Delft, The Netherlands (August, 1982).Google Scholar
  23. Grootscholten, P. A. M., de Jong, E. J. and Scrutton, A., “Chemical engineering approach to industrial crystallization,” Proc. 2nd World Congress, Chem. Eng. IV, Montreal, 59-66 (1981).Google Scholar
  24. Gupta, G. and Timm, D. C, “Predictive-corrective control for continuous crystallization,” Chem. Eng. Prog. Symp. Sen No. 110 67, 121–128 (1971).Google Scholar
  25. Han, C. D., “A control study on isothermal mixed crystallizers,” Ind. Eng. Chem. Process Des. Dev. 8, 150–158 (1969).CrossRefGoogle Scholar
  26. Han, C. D. and Shinnar, R., “The steady state behaviour of crystallizers with classified product removal,” AIChEJ. 14, 612–619 (1968).CrossRefGoogle Scholar
  27. Hartel, R. W. and Randolph, A.D., “Mechanisms and kinetic modeling of calcium oxalate crystal aggregation in a urinelike liquor part II: Kinetic modeling,” AIChE J. 32, 1186–1195 (1986).CrossRefGoogle Scholar
  28. Hashemi, R. and Epstein, M. A. F., “Observability and controllability considerations in crystallization process design,” AIChE Symp. Sen No. 215 78, 81–90 (1982).Google Scholar
  29. Heiskanen, T. and Norden, H. V., “Dynamics and stability of an MSMPR crystallizer with fines dissolving,” Acta Polytechnica Scandinavica, Chem. Tech. and Metallurgy Sen No. 158, Helsinki, 2-45(1984).Google Scholar
  30. Hounslow, M. J., “A discretized population balance for continuous systems at steady state,” AIChE J. 36,106–116 (1990a).CrossRefGoogle Scholar
  31. Hounslow, M. J., “Nucleation, growth and aggregation rates from steady state experimental data,” AIChE J. 36,1748–1751 (1990b).CrossRefGoogle Scholar
  32. Hounslow, M. J., Ryall, R. L. and Marshall, V. R., “A discretized population balance for nucleation, growth and aggregation,” AIChE J. 34, 1821–1832 (1988).CrossRefGoogle Scholar
  33. Hulburt, H. M. and Katz, S., “Some problems in particle technology: a statistical mechanical formulation,” Chem. Eng. Sci. 19, 555–574 (1964).CrossRefGoogle Scholar
  34. Hulburt, H. M. and Stefango, D. G., “Design models for continuous crystallizers with double drawoff,” Chem. Eng. Symp. Ser. No.195 65,50–58 (1969).Google Scholar
  35. Ishii, T. and Randolph, A. D., “Stability of the high-yield MSMPR crystallizer with size-dependent growth rate,” AIChE J. 26, 507–510(1980).CrossRefGoogle Scholar
  36. Jager, J., de Wolf, S., Kramer H. J. M. and de Jong, E. J., “Estimation of nucleation kinetics from crystal size distribution transients of a continuous crystallizer,” Chem. Eng. Sci. 46, 807–818 (1991).CrossRefGoogle Scholar
  37. Janse, A. H., and de Jong, E. J., “The occurrence of growth dispersion and its consequences”, in Mullin, J. W. (Ed.), Industrial Crystallization’ 75, Plenum, New York, 145–154 (1976).CrossRefGoogle Scholar
  38. Janse, A. H. and de Jong, E. J., “The importance of classification in well mixed crystallizers”, in Mullin, J. W. (Ed.), Industrial Crystallization’ 75, Plenum, New York, 403–412 (1976).CrossRefGoogle Scholar
  39. Jerauld, G. R., Vasatis, Y. and Doherty, M. F., “Simple conditions for the appearance of sustained oscillations in continuous crystallizers,” Chem. Eng. Sci. 38, 1675–1681 (1983).CrossRefGoogle Scholar
  40. Juzaszek, P. and Larson, M. A., “Influence of fines dissolving on crystal size distribution in an MSMPR crystallizer,” AIChE J. 23, 460–468 (1977).CrossRefGoogle Scholar
  41. Kotzev, A., Resnick W., and Lavie, R., “Evaluation of discrete approximations to continuous size distributions for control of crystallization processes,” Chem. Eng. Sci. 41, 3045–3051 (1986).CrossRefGoogle Scholar
  42. Lamey, M. D. and Ring, T. A., “The effects of agglomeration in a continuous stirred tank crystallizer,” Chem. Eng. Sci. 41, 1213–1219 (1986).CrossRefGoogle Scholar
  43. de Leer, B. G. M., Koning, A., and de Jong, E. J., “Stability and dynamic behaviour of crystallizers,” in Mullin, J. W. (Ed.), Industrial Crystallization, Plenum, New York, 391–402 (1976).CrossRefGoogle Scholar
  44. Liao, P. F. and Hulburt, H. M., “Agglomeration processes in suspension crystallization,” Annual Meeting of American Institute Chemical Engineers, Chicago, (December 1976).Google Scholar
  45. Lei, S. J., Shinnar, R. and Katz, S., “The stability and dynamics of a continuous crystallizer with fines trap,” AIChE J 17 1459–1470 (1971a).CrossRefGoogle Scholar
  46. Lei, S. J., Shinnar, R. and Katz, S., “Feedback control of a continuous crystallizer with and without fines trap,” Chem. Eng. Symp. Ser. No. 110 67,129–144 (1971b).Google Scholar
  47. Lieb, E. B., “Perfect mixing approximation of imperfectly mixed continuous crystallizers,” AIChE J. 19, 646–648(1973).CrossRefGoogle Scholar
  48. Liss, B. and Shinnar, R., “The dynamic behaviour of continuous crystallizers in which nucleation and growth depend on properties of crystal magma,” AIChE Symp. Ser. No. 153 72, 28–40 (1976).Google Scholar
  49. Liu, Y. A. “On the crystal size intensity function and interpreting population density data from crystallizers,” AIChE J. 19, 1254–1257 (1973).CrossRefGoogle Scholar
  50. Miller, P. and Saeman, W. C, “Continuous vacuum crystallization of ammonium nitrate,” Chem. Eng. Prog. 43, 667–690 (1947).Google Scholar
  51. Mullin, J. W. and Nyvlt., J., “The periodic behaviour of continuous crystallizers,” Chem. Eng. Sci. 25, 131–147 (1970).CrossRefGoogle Scholar
  52. Murray, D. C. and Larson, M. A., “Size distribution dynamics in a salting-out crystallizer,” AIChE J. 11, 728–733 (1965).CrossRefGoogle Scholar
  53. Pudjiono, P. I. and Tavare, N. S., “Residence time distribution analysis from a continuous Couette flow device around critical Taylor number,” Can. J. Chem. Eng. 71, 312–318 (1993).CrossRefGoogle Scholar
  54. Randolph, A. D., “The mixed-suspension, mixed-product removal crystallizer as a concept in crystallizer design,” AIChE J. 11, 424–430 (1965).CrossRefGoogle Scholar
  55. Randolph, A. D., “A perspective on population models for crystal size distribution”, in de Jong, E. J. and Jancic, S. J. (Eds.), Industrial Crystallization 78, North-Holland, Amsterdam, 295–308 (1979).Google Scholar
  56. Randolph, A. D., “CSD dynamics, stability, and control: A review paper,” AIChE Symp. Ser. No. 193 76, 1–5 (1980).Google Scholar
  57. Randolph, A. D. and Beckman, J. R., “Crystal size distribution dynamics in a classified crystallizer: Part II. Simulated control of crystal size distribution,” AIChE J. 23, 510–520 (1977).CrossRefGoogle Scholar
  58. Randolph, A. D., Beckman, J. R. and Kraljevich, Z. I., “Crystal size distribution dynamics in a classified crystallizer: Part I. Experimental and theoretical study of cycling in potassium chloride crystallizer,” AIChE J. 23, 500–510 (1977).CrossRefGoogle Scholar
  59. Randolph, A. D., Beer, G. L. and Keener, J. P., “Stability of the class II classified product removal,” AIChE J. 19, 1140–1149 (1973).CrossRefGoogle Scholar
  60. Randolph, A. D., Chen, L. and Tavana, A., “Feedback control of CSD in a KC1 crystallizer with a finesdissolver,” AIChE J. 33, 583–591 (1987).CrossRefGoogle Scholar
  61. Randolph, A. D. and Cise, M. D., “Nucleation kinetics of the potassium sulphate — water systems,” AIChE J. 18, 798–807 (1972).CrossRefGoogle Scholar
  62. Randolph, A. D. and Kraljevich, Z. I., “A design-oriented model of fines dissolving,” AIChE J. 24, 598–606(1978).CrossRefGoogle Scholar
  63. Randolph, A. D. and Larson, M. A., “Transient and steady state distributions in continuous mixed suspension crystallizers,” AIChE J. 8, 639–645 (1962).CrossRefGoogle Scholar
  64. Randolph, A. D. and Larson, M. A., “Analog simulation of dynamic behaviour in a mixed crystal suspension,” Chem. Eng. Symp. Ser. No. 55 61, 147–154 (1965).Google Scholar
  65. Randolph, A. D. and Larson, M. A., “Size distribution analysis in continuous crystallization,” Chem. Eng. Prog. Symp. Ser. No. 95 65, 1–13 (1969).Google Scholar
  66. Randolph, A. D. and Larson, M. A., Theory of Particulate Processes, Academic Press, New York (1971).Google Scholar
  67. Randolph, A. D., Low C. C. and White, E. T., “On-line measurement of fine crystal response to crystallizer disturbances,” Ind. Eng. Chem. Process Des. Dev. 20, 496–503 (1981).CrossRefGoogle Scholar
  68. Randolph, A. D. and Low, C. C, “Some attempts at CSD control utilizing on-line measurement of nucleation rate,” in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization 81, North-Holland, Amsterdam, 29–34 (1982).Google Scholar
  69. Randolph, A. D. and Rowang, R. D., “On-line particle size analysis in the fines loop of a KC1 crystallizer,” AIChE Symp. Ser. No. 193 76, 18–26 (1980).Google Scholar
  70. Randolph, A. D. and Sikdar, S. K., “Effect of a soft impeller coating on the net formation of secondary nuclei,” AIChE J. 20, 410–412 (1974).CrossRefGoogle Scholar
  71. Randolph, A. D. and Sikdar, S. K., “Creation and survival of secondary crystal nuclei: The potassium sulphate-water system,” Ind. Eng. Chem. Fundam. 15, 64–71 (1976).CrossRefGoogle Scholar
  72. Randolph, A. D. and White, E. T., “Modelling size dispersion in the prediction of crystal size distribution,” Chem. Eng. Sci. 32, 1067–1076 (1977).CrossRefGoogle Scholar
  73. Ring, T. A., “Continuous precipitation of monosized particles with a packed bed crystallizer,” Chem. Eng. Sci. 39,1731–1734 (1984).CrossRefGoogle Scholar
  74. Rivera, T. and Randolph, A. D., “A model for the precipitation of pentaerythriol tetranitrate (PETN),” Ind. Eng. Chem. Process. Des. Dev. 17, 182–188 (1978).CrossRefGoogle Scholar
  75. Rohani, S., “Dynamic study and control of crystal size distribution (CSD) in a KC1 crystallizer,” Can. J. Chem. Eng. 64, 112–116 (1986).CrossRefGoogle Scholar
  76. Rosen, H. N. and Hulburt, H. M., “Continuous vacuum crystallization of potassium sulphate,” Chem. Eng. Prog. Symp. Ser. No. 110 67, 18–26 (1971).Google Scholar
  77. Rousseau, R. W. and Howell, T. R., “Comparison of simulated crystal size distribution control system based on nuclei density and supersaturation,” Ind. Eng. Chem. Process Des. Dev. 21, 606–610 (1982).CrossRefGoogle Scholar
  78. Saeman, W. C, “Crystal size distribution in mixed suspensions,” AIChE J. 2, 107–112 (1956).CrossRefGoogle Scholar
  79. Saeman, W. C, “Crystallization equipment design,” Ind. Eng. Chem. 53, 612–622 (1961).CrossRefGoogle Scholar
  80. Shah, M. B., Crystallization Kinetics and Agglomeration of Nickel Ammonium Sulphate in a Continuous Crystallizer, Ph.D. thesis, University College London, London (1980).Google Scholar
  81. Sherwin, B. M., Shinnar, R. and Katz, S., “Dynamic behaviour of the well-mixed isothermalcrystallizer,” AIChE J. 13, 1141–1154 (1967).CrossRefGoogle Scholar
  82. Sherwin, B. M, Shinnar, R. and Katz, S., “Dynamic behaviour of isothermal well-stirred crystallizer with classified outlet,” Chem. Eng. Prog. Symp. Ser. No. 95 65, 75–90 (1969).Google Scholar
  83. Shields, J. P., “Transient behaviour in crystallization design models related to plant experiences,” in Mullin, J. W. (Ed.), Industrial Crystallization, Plenum, New York, 375–389 (1976).CrossRefGoogle Scholar
  84. Shin, Y. J., Yun, G. H. and Lee, C. S., “A study of the start-up dynamics of a CMSMPR (continuous mixed suspension mixed product removal) crystallizer I. Approximate solution using the population balance equation,” Int. Chem. Eng. 26, 348–355 (1986).Google Scholar
  85. Song, Y. and Douglas, J. M., “Self-generated oscillations in continuous crystallizer. II: An experimental study of an isothermal system,” AIChE J. 21, 924–930 (1975).CrossRefGoogle Scholar
  86. Sowul, L. and Epstein, M. A. F., “Crystallization kinetics of sucrose in a CMSMPR evaporative crystallizer,” Ind. Eng. Chem. Proc. Des. Dev. 20, 197–203 (1981).CrossRefGoogle Scholar
  87. Tavare, N. S., “Crystal growth rate dispersion,” Can. J. Chem. Eng. 63, 436–442 (1985).CrossRefGoogle Scholar
  88. Tavare, N. S., “Mixing in continuous crystallizers,” AIChE J. 32,705–732 (1986a).CrossRefGoogle Scholar
  89. Tavare, N. S., “Crystallization kinetics from transients of an MSMPR crystallizer,” Can. J. Chem. Eng. 64, 752–758 (1986b).CrossRefGoogle Scholar
  90. Tavare, N. S. and Chivate, M. R., “Growth and dissolution kinetics of potassium sulphate crystals in a fluidized bed crystallizer,” Trans. I. Chem. E. 57, 35–42 (1979).Google Scholar
  91. Tavare, N. S. and Garside, J., “Multiplicity in continuous MSMPR crystallizers I: Concentration multiplicity in an isothermal crystallizer,” AIChE J. 31, 1121–1127 (1985).CrossRefGoogle Scholar
  92. Tavare, N. S., Garside, J. and Akoglu, K., “Multiplicity in continuous MSMPR crystallizers II: Temperature multiplicity in a cooling crystallizer,” AIChE J. 31, 1128–1135 (1985).CrossRefGoogle Scholar
  93. Tavare, N. S. and Patwardhan, A. V., “Agglomeration in a continuous MSMPR crystallizer,” AIChE J. 38, 377–384 (1992).CrossRefGoogle Scholar
  94. Tavare, N. S., Shah, M. B. and Garside, J., “Crystallization and agglomeration kinetics of nickel ammonium sulphate in an MSMPR crystallizer,” Powder Technol, 44,13–18 (1985).CrossRefGoogle Scholar
  95. Timm, D. C. and Larson, M. A., “Effects of nucleation kinetics on the dynamic behaviour of a continuous crystallizer,” AIChE J. 14, 452–457 (1968).CrossRefGoogle Scholar
  96. White, E. T., Bendig, L. L. and Larson, M. A., “The effect of size on the growth rates of potassium sulphate crystals,” AIChE Symp. Ser. No. 153 72, 41–47 (1976).Google Scholar
  97. White, E. T. and Randolph, A. D., “Graphical solution of the material balance constraint for MSMPR crystallizers,” AIChE J. 33, 686–689 (1987).CrossRefGoogle Scholar
  98. Youngquist, G. R. and Randolph, A. D., “Secondary nucleation in a class II system: ammonium sulphate-water,” AIChEJ. 18, 421–429 (1972).CrossRefGoogle Scholar
  99. Yu, K. M. and Douglas, J. M., “Self-generated oscillations in continuous crystallizers I: Analytical prediction of the oscillating output,” AIChEJ. 21, 917–923 (1975).CrossRefGoogle Scholar
  100. Zacek, S., Nyvlt, J., Garside, J. and Nienow, A. W., “A stirred tank for continuous crystallization studies,” Chem. Eng. J. 23, 111–113 (1982).CrossRefGoogle Scholar
  101. Zumstein, R.C., 1., Modelling, determination and measurement of growth rate dispersion in crystallization, 2. The crystallization of L-isoleucine in aqueous solutions, Ph.D. thesis, North Carolina State University, Raleigh (1987).Google Scholar
  102. Zumstein, R. C. and Rousseau, R. W., “Agglomeration of copper sulphate pentahydrate crystals within well-mixed crystallizers,” Chem. Eng. Sci. 44, 2149–2155 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Narayan S. Tavare
    • 1
  1. 1.University of Manchester Institute of Science and Technology (UMIST)ManchesterUK

Personalised recommendations