Skip to main content

Rate Processes and Reaction Models

  • Chapter
  • 562 Accesses

Abstract

As will be shown in Chapter 6, process modeling is concerned with the construction of a mathematical description of a chemical process in terms appropriate to a specific purpose. To achieve this, it is necessary to obtain a reaction model which expresses the rate of reaction as a function of relevant variables. This requires, ideally, knowledge of the individual reaction steps, the rate at which they occur, and the mass transport rates for the species in the reaction. But often, detailed quantitative kinetic data are not available and not easy to determine Semiempirical relations may have to be used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pilling M. J., 1975, Reaction Kinetics, Oxford Clarendon Press, Oxford Chemistry Series.

    Google Scholar 

  2. Moore, W. J., 1972, Physical Chemistry,Longman.

    Google Scholar 

  3. Barrow, G. M., 1979, Physical Chemistry, McGraw-Hill, New York.

    Google Scholar 

  4. Smith J. M., 1981, Chemical Engineering Kinetics, McGraw-Hill, New York.

    Google Scholar 

  5. Barrow, p. 681.

    Google Scholar 

  6. Kreysa, G., and Medin. H., 1986, “Indirect electrosynthesis of p-methyoxybenzaldehyde,“ J. Appl. Electrochem., 16: 757–767.

    Article  CAS  Google Scholar 

  7. Goodridge, F., Harrison, S., and Plimley, R. E., 1986, “The electrochemical production of propylene oxide,” J. Electroanal. Chem., 214: 283–293.

    Article  CAS  Google Scholar 

  8. Barrow, p. 670.

    Google Scholar 

  9. Glasstone, S., Laidler, K. J., and Eyring, H., 1941, The Theory of Rate Processes, McGraw-Hill, New York.

    Google Scholar 

  10. Barrow, pp. 697–700.

    Google Scholar 

  11. Bard, A. J., and Faulkner, L. R., 1980, Electrochemical Methods, John Wiley & Sons, New York.

    Google Scholar 

  12. Barrow, p. 19.

    Google Scholar 

  13. Koryta, J., Dvorak, J., and Bohackova, V., 1970, Electrochemistry, Methuen & Co., New York, p. 257.

    Google Scholar 

  14. Thirsk, H. R.,and Harrison, J.A., 1972, A Guide to the Study of Electrode Kinetics,Academic Press, p. 15.

    Google Scholar 

  15. Treyball, R. E., 1980, Mass-Transfer Operations, McGraw-Hill, New York, p. 47.

    Google Scholar 

  16. Rousar, I.,Micka, K., and Kimla, A., 1986, Electrochemical Engineering,Vol. 1, Elsevier, pp. 23–27.

    Google Scholar 

  17. Fried, I., 1973, The Chemistry of Electrode Processes,Academic Press, p. 54.

    Google Scholar 

  18. Delahay, P., 1965, Double Layer and Electrode Kinetics, John Wiley & Sons, New York, p. 83.

    Google Scholar 

  19. Pletcher, D., 1982, Industrial Electrochemistry,Chapman & Hall, pp. 32–41.

    Google Scholar 

  20. Trasatti, S., and O’Grady, W. E., 1981, “Properties and applications of Ru02-based electrodes,” in Advances in Electrochemistry and Electrochemical Engineering, Vol. 12, ( H. Gerischer and C. W. Tobias, eds.), John Wiley & Sons, New York, pp. 180–261.

    Google Scholar 

  21. Goodridge, F., and King, C. J. H., 1974, “Experimental methods and equipment,” in Techniques of Electroorganic Synthesis I, ( N. L. Weinberg, ed.), John Wiley & Sons, New York, pp. 7–147.

    Google Scholar 

  22. Albery, J., 1975, Electrode Kinetics, Clarendon Press, Oxford, pp. 49–55.

    Google Scholar 

  23. Thirsk and Harrison, pp. 83–95.

    Google Scholar 

  24. Harrison, J. A., and Small, C. E., 1980, “The automation of electrode kinetic measurements-Part 1: The instrumentation and fitting of the data using a library of reaction schemes,” Electrochim. Acta, 25: 447–452.

    Article  CAS  Google Scholar 

  25. Harrison, J. A., 1982, The automation of electrode kinetic measurements-Part 7,“ Electrochim. Acta, 27: 1113–1122.

    Article  CAS  Google Scholar 

  26. Clark, J. M. T., Goodridge, F., and Plimley, R. E., “A reaction model for the electrochemical production of p-anisidine,” J. Appl. Electrochem., 18: 899–903.

    Google Scholar 

  27. Lund, H., 1991, “Cathodic reduction of nitro and related compounds,” in Organic Electrochemistry, an Introduction and a Guide, ( Henning Lund and M. M. Baizer, eds.), Marcel Dekker, New York, pp. 401–432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodridge, F., Scott, K. (1995). Rate Processes and Reaction Models. In: Electrochemical Process Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0224-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0224-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0226-9

  • Online ISBN: 978-1-4899-0224-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics